

i

 COPYRIGHT 1996 Gary Ian Moore

This manual and the software and supplied scripts are copyright. Except as permitted under
the Copyright Act 1968 (Cth.) no part of this manual or software may be reproduced by any
process, electronic or otherwise, without the specific written permission of the copyright
owner. You may modify and use supplied script files and examples given in this manual as a
basis for your own scripts provided you acknowledge the originator's work.

Windows and MS-DOS are trademarks of the Microsoft corporation

IME Software, P.O. Box 1153 Toowong, QLD 4066, Australia

ISBN 0 646 27183 0

ii

Preface

Rayscript refers to the script facility provided as part of the Raytrace package. This facility allows you
to program sequences of operations in Raytrace. Using Rayscript you can

• Set up free-running or interactive demonstrations
• Pre-program lecture demonstrations
• Create lessons or tasks for student use
• Program complex sequences of Raytrace operations into "macros"

This manual documents the script language. You should take the time to become reasonably familiar
with the normal use of Raytrace before embarking upon writing your own scripts. See the Raytrace
Tutorial and Reference manuals for information on using Raytrace.

Raytrace comes with an ever increasing number of example scripts - choosing the menu item Help --
Helper scripts will introduce you to most of these.

iii

CONTENTS

Introduction ... 1

The script language... 3

Syntax .. 4
Strategies for writing scripts.. 5
Prototypes .. 8
The script calculator ... 10

Script commands by function type... 14

Script commands in alphabetic order... 22

Notation used in command descriptions.. 23

1

INTRODUCTION

Raytrace offers you enormous power and flexibility in designing and working with ray diagrams. The
cost of this flexibility is the time required to learn to use Raytrace. Students can ill afford to spend
time learning the intricacies of a program that they may only use a few times. Similarly, if you only
use Raytrace once or twice a year for lecture demonstrations then you will probably need to refresh
your memory each time you use it.

Raytrace's script facility allows you to pre-define demonstrations, tasks or lessons using all of
Raytrace's interactive features. Once you have programmed a demonstration as a script it becomes
a useful resource that can be used by you and others without recourse to special skills. Another
advantage of performing demonstrations with scripts (apart from avoiding embarrassment if you
forget how to do something) is that sequences of operations that might distract from the
demonstration's main purpose can be done "all at once" within the script.

This manual is divided into three broad sections. The first of these, The script language, presents the
basic syntax and operation of the script language and is required reading if you intend to write your
own scripts or modify those supplied. After reading this section, try looking at and running some of
the supplied script files.

You can run a script either explicitly by selecting the menu item File -- Run script and specifying the
name of the script file or implicitly by using either of the menu items Help -- Quick Tour or Help --
Helper scripts. If you have turned on the button bar facility and are using the standard button bar
shipped with Raytrace then you can simply click on the RunScript button.

If you have not already done so then try using Help -- Helper scripts now to get some idea of what
can be done with scripts. Be aware that there are some script files supplied which are not "stand
alone" they are meant to be run as subroutines by other scripts - these are clearly identified by
comments at the start and some will report errors if you attempt to run them explicitly using File --
Run script.

2

3

THE SCRIPT LANGUAGE

The script language

4

Syntax

Raytrace scripts are a sequence of commands to Raytrace interspersed with text that is presented to
a user in the Script dialog box. Generally, commands mimic a single specific operation within
Raytrace. For example, one of the commands that you will use most frequently is ".click". This
command moves the cursor to specific Raytrace coordinates and performs the same function as if
the user had clicked the real mouse button at that position.

Script files are simply ASCII text files. You can use any text editor to create a script file, for example
the Windows Notepad editor or the MS-DOS Editor. You can use a word-processor provided you can
save your file as plain ASCII text without formatting information.

The syntax of the Raytrace script language is very simple. The first character on a line determines
how that line is interpreted.

If the first character is:

• a period, '.', character, then the line contains a command. All commands effectively begin

with a period and are shown that way in this manual. There can be only one command per
line, e.g

 .new_text

• a percent, '%', character, then the line is a comment and is ignored by the script interpreter.

Comments serve to provide more information to you or someone else trying to work out how
the script works, e.g.

 % This is a comment

 Use comments liberally.

• a colon, ':', character, then the line contains a label. The label is the word immediately after

the colon. The label is used as a target for transfer of control within the script and performs
no direct function, e.g.

 :LABEL

• any other character (including the "white space" characters space and tab), then the line

contains text which will be displayed in the script dialog box as directions or information for
the user, e.g.

 Click on continue.

 A blank line in the script is used to force a new line in the text displayed in the script dialog.

Hence N blank lines in sequence produces N-1 blank lines in the script dialog.

The script interpreter is totally case insensitive. This applies to commands, variable names and
labels.

The script language

5

Strategies for writing scripts

There are two basic strategies you can take in designing a script. The first is to create a ray diagram
manually, save it and then have the script open the diagram and perform some operations on it. This
approach is often the quickest and simplest and much of the Quick Tour provided with Raytrace uses
this method. Once you have created the ray diagram you can use the menu item Info -- Identify
Point to find the coordinates of points needed by the script.

This method suffers from the disadvantage that if the ray diagram is modified even slightly, then the
script may become useless. A second approach is to have the script create the ray diagram from
scratch and then operate on it. This requires more effort when initially writing the script but will
probably pay off in the long run. Script files also tend to be much smaller than any ray diagram they
create so you save on disk space; not that this is so much of an issue these days.

Before writing your first few scripts using this strategy, create the basic ray diagram manually to get
an idea of what coordinates you will use and the sequence of operations involved; note these down
and you are well on the way to developing your script.

Develop your scripts a small section at a time. Scripts that accomplish a complex task such as a
lesson or in depth demonstration may require several hundred lines. While developing such a script it
is a good idea to break it into shorter segments which are linked in sequence using .script
commands as illustrated in the three example scripts shown below.

In a file called part1.rsc:

 % This is the first in a series of scripts.
 % In this part the ray diagram is cleared and a prism created
 .file_new
 .clear_var
 .create_region
 .fc -80 0
 .fc 80 0
 .fc 0 100
 .end_element
 .=> PRISM
 % Save the diagram before jumping to the next part. This
 % allows part 2 to run independently if necessary by
 % opening this file. Use .save/d so that all handles etc
 % are guaranteed to be valid on reloading.
 .save/d temp1.ray
 % Jump to part 2
 .script part2.rsc

In a file called part2.rsc:

 % Part 2 in this series creates a white ray striking the prism
 % Get the state saved at the end of part 1
 .new_text
 Now running part 2
 .pause
 .open temp1.ray
 % Allow stepping back (provided part1 can re-initialise itself)
 .run_from part1.rsc
 .source_ray_count 3
 .point_source
 .fc -160 -47
 .mid_snap
 .object_coordinates PRISM 3 middle
 .fc X Y
 .mid_snap
 .fc X Y
 % Make the source a white ray
 .all_rays
 .white_ray
 .unselect_all
 % Save state for part 3
 .save/d temp2.ray

The script language

6

 .script part3.rsc Jump to the next part

The script language

7

In a file called part3.rsc:

 % Part 3 in this series of scripts adds a normal
 % Get state saved at end of part 2
 .new_text
 Now running part 3
 .pause
 .open temp2.ray
 .run_from part2.rsc
 % Put a normal on the first incident ray
 .all_rays
 .selected_ray
 .=> RAY
 .unselect_all
 .set_length 50
 .select_object RAY
 .normal 1
 % Save etc. if you wish to add more parts

And you can continue with many parts to make up a script as long as you want. This sequence allows
you to step forward and backward through the series of scripts or to start midway through after an
error. When you have finished developing and debugging you can, if you wish, combine all the parts
into one big script file and delete all the temporary ray files.

It is generally a good idea to use .save/d instead of .save in this situation to ensure that the re-
opened file reproduces an identical internal structure for the ray diagram database.

The script language

8

Prototypes

Base a script which creates its own ray diagram on the following prototype:

 % A comment describing what the script does
 .new_text
 This script does describe it again. This will appear
 to the user.

 Do you wish to proceed?
 % Give user a chance to stop before launching a long demo/task
 .yes_no SKIP
 .file_new
 .clear_var
 .enable_undo 0
 .quiet_snap 1
 .grid_snap 0
 %
 % The body of the script which does what you intend
 %
 :SKIP
 .enable_undo 1
 .quiet_snap 0
 .return

The first part of the script tells the user what is about to happen and gives them a chance to get out
before becoming involved in something they may have started by accident.

Setting the state of .enable_undo and .quiet_snap at the start is a good habit since you cannot
predict their state when the script is run. Setting their state before exiting is a protocol that might help
other scripts which have neglected to set the states survive. Do the same with any other options that
you may decide to change - for example .drag_handles.

You can end a script with .close_script but using .return is functionally the same in that it will close
the script dialog when the user has run the script explicitly. Using .return is more flexible since it
allows another script to run this script - like the Helper Scripts.

Base a script which is intended only for use as a sub-routine on this prototype:

 % Describe the sub routine's function (maybe several lines)
 % Expects:
 % List here any variables that the routine expects as "arguments"
 % and how they are used
 % Creates:
 % List here any variables the routine creates as "return values"
 % and how they should be interpreted
 % Clears:
 % List here any variables that are cleared by the routine.
 % Describe any other important information for a caller.
 %
 % The body of the script routine
 %
 .return

The "Expects:, Creates:, Clears:" pre-amble provides essential information needed by a caller. A
caller should avoid using any variable names which appear in the "Clears" section so as not to lose
information.

If you want to give users an easy path into a series of scripts then create a script along the following
lines.

 % This script gives users easy access to other scripts
 :REPEAT
 % Give the user some options
 .new_text

The script language

9

 Click on...

 A - to run "good1"; a script on...

 B - to run "good2"; a script on...

 C - to see more options

 D - to exit this script.
 .choose 4 A B C END
 :A
 .call good1.rsc
 .goto REPEAT
 :B
 .call good2.rsc
 .goto REPEAT
 :C
 % Another set of options
 .new_text
 Click on...

 A - to run "good3" a script on...

 B - to go back to the previous options

 C - to exit this script.
 .choose 3 A2 REPEAT END
 :A2
 .call good3.rsc
 .goto REPEAT
 :END
 .return

This allows the user to progress through a series of choices to locate the script they want without
having to search through a list of filenames. The script file helper.rsc supplied with Raytrace is written
along these lines - it is always run in response to the user selecting the menu item Help -- Helper
scripts. If you like, you can replace the suppled helper.rsc file with your own version with the same
name to customise access to your own scripts.

The script language

10

The script calculator

The script facility provides the basic functionality of a scientific calculator. At this stage the script
interpreter cannot parse complicated arithmetic expressions; these must be evaluated by a series of
commands not unlike the sequence of keystrokes you would use when using a simple calculator. The
script calculator is for the occasional necessary calculation not for solving complex arithmetic
problems and the interpreter was designed to be as simple as possible.

Central to using the script calculator is an understanding of the "accumulator". You can think of the
accumulator as a variable which holds the number that would be displayed on a simple calculator.
Binary operators like + and * use the accumulator as one of their arguments. Results of calculations
are placed in the accumulator. You can enter numbers into the accumulator as if they were
commands, e.g.

 .1.23

places 1.23 in the accumulator. Note the initial period is not part of the number, a digit before a
decimal point is not necessary but is recommended for clarity.

You can used named variables. These are defined simply by the action of storing a number in them.
For example the sequence

 .0.25
 .=> QUARTER

first enters 0.25 into the accumulator then stores the accumulator in a variable called QUARTER.
You can then use the variable name QUARTER as if it was a number. For example,

 .0.25
 .=> QUARTER
 .QUARTER
 .+ QUARTER
 .=> HALF

Results in a value of 0.5 in both the accumulator and another variable called HALF.

If a variable name is followed by a numerical value then the value is stored in the variable. The
accumulator is unaffected by this. For example,

 .0
 .=> X
 .=> Y
 .=> COUNT
 .COUNT 20

defines three variables, X, Y and COUNT. X, Y and the accumulator contain 0 and COUNT contains
20.

There is a limit of 50 named variables at any one time. You should clear unwanted variables with the
.clear_var command to avoid running into this limit.

There is no precedence in the script calculator, each command is processed immediately it is
encountered. For example:

 .3
 .+ 2
 .* 5

results in a value of 25 in the accumulator not 13. Using a temporary variable is often one way of
avoid precedence problems. For example, one way to evaluate the expression: (3x2 + 10x + 8)-1
would be the following sequence (assuming the variable x is defined):

 % Eval 1/(3x^2+10x+8) Comment is a good idea unless the expression is trivial
 .^2 X Squares X and place result in the accumulator
 .* 3 Multiply the accumulator by 3
 .=> TEMP Save the result in a variable called TEMP
 .X Get contents of x into accumulator

The script language

11

 .* 10 Multiply accumulator by 10
 .+ TEMP Add the previous result
 .+ 8 Add 8 to the accumulator
 .1/ Take the reciprocal of the accumulator
 .clear_var TEMP Be tidy and remove the temporary variable

Some thought will often simplify the resulting script. For example the same expression could be
evaluated without using a temporary variable as shown below

 % Eval 1/(3x^2+10x+8)
 .X Get contents of x into accumulator
 .* 3 Multiply by 3
 .+ 10 Add 10
 .* X Multiply the sum by x
 .+ 8 Add 8 to the accumulator
 .1/ Take the reciprocal of the accumulator

There are four keywords which you can use instead of numeric strings These are:

userinput This displays an edit box in the script dialog and expects the user of to enter the

number which will be used.

 Example:

 % Get coords from user
 .userinput
 .=> X
 .=> Y
 .Y userinput

 Would get two numbers from the user and place them in the variables X and Y.

 See also the commands .default_input and .input_limits.

random This generates a random number (uniformly distributed) between 0 and 1 which will

be used in its place. You might use random numbers to generate variations between
ray diagrams for individual students.

 Example:

 % Vary focal length between 150 and 250
 .100
 .* random
 .round
 .+ 150
 .=> FLEN

 See also the command .randomize.

lastclick.x These replace themselves with the x and y coordinates (respectively) of the most
lastclick.y recent mouse click (user and script generated clicks included).

 Example:

 .user_click
 .new_text
 You click at coordinates:
 .printf %g lastclick.x
 ,
 .printf %g lastclick.y

 % Displays coordinates of user's click

Note that the initial period of the command line is not part of these keywords.

The script language

12

And finally...

As you become familiar with the script language you may find yourself asking the questions, "Why
don't commands like, for example, .point_source take coordinates as arguments? Why do these
coordinates have to be specified using subsequent commands like .click?" The answer is that this
method allows control to be passed seamlessly from the script to the user and back again without any
change in syntax.

13

14

SCRIPT COMMANDS BY FUNCTION TYPE

Tables of commands by category

15

Arithmetic and calculator related commands
.abs absolute value

.sign find sign -1,0,1

.arccos, .arcsin, .arctan, .arctan2 inverse trig functions

.clear_var clear script variable(s)

.=> assign to variable

.cos, .sin, .tan trig functions

.deg>rad, .rad>deg degree <> radian conversions

.exp, .log_e, .^10, .log_10 exponentials and logarithms

.max, .min min and max functions

.randomize re-seed random numbers

.round, .truncate convert to integer

.sqrt, .^2 square root, square

.+, .-, ,*, ./ basic 4 functions

.1/ reciprocal

.+/- change sign

Clear or delete commands

.clear_all clears entire ray diagram

.clear_rays, .clear_elements,

.clear_tapemeasures,

.clear_protractors,

.clear_annotations, .clear_trails

clear all of one type of object

.delete delete selected objects

Element modification commands

.change_conic change constraints on existing conic segment

.element_on, .element_off turn ray interactions with selected elements on and off

.explode, .join break apart and join together selected elements

.group, .ungroup make/unmake element groupings

.link_segments, unlink_segments make/unmake links between segments

.link_move, .link_stretch options for .link_segments

.lock, .lock_x, .lock_y, .unlock constrain how selected elements may be dragged

.make_region, .make_shape,

.make_surface
change selected elements to specified type

.set_radius when dragging arc tangent point, specify numerical radius

Tables of commands by category

16

Editing commands

.cut, .copy, .paste clipboard type functions

.delete delete selected objects

.mirror flip selected objects about a line

.move_selection move selected objects

.rotate, .rotate_drag rotate selected objects

.scale resize selected objects

.undo undo previous operation

Execution flow control
.call, .return call into "subroutine" script and return from it

.choose give user choices to follow

.goto unconditional execution branch

.if==, .if!=, .if<=, .if>=, .if<, .if> conditional execution branching

.run_from, .script set function of "Previous" button, jump to script

.yes_no give user yes/no choice

.--if!=0 decrement variable and branch if non-zero

File commands

.file_new clear diagram and reset some options

.open open existing diagram

.save, .save/d save diagram to file

Miscellaneous commands

.close_script exit script dialog

.control_key, .shift_key set state of control and shift keys

.exit_raytrace close raytrace application

.new_text start new text in script dialog

.pause wait for user to click continue

.printf convert number to text in script dialog

.button_bar control display of button bar

.auto_drag start an auto drag operation

Tables of commands by category

17

Mouse related commands

.click, .click_rel, .ck, ckr move cursor and "click"

.fast_click, .fast_click_rel, .fc, .fcr "click" without cursor movement

.fast_move, .fast_move_rel reposition cursor

.mouse_limits set limits on user mouse input

.move, .move_rel move cursor on screen

Ray and element creation and related commands

.anticlockwise_arc,
clockwise_arc

set arc direction for radius/end, centre/end options

.arcseg, .conicseg, .lineseg change element segment type

.centre_end, .chord_tan,

.radius_end
change arc creation option

.conic_options set default conic segment constraints

.create_ray, .create_rays create a ray or rays

.finished_rays end ray creation

.create_region, .create_shape,

.create_surface, .create_iris,

.create_grating

create element of specified type

.end_element complete creation of an element

Option control
.drag_handles control display of drag handles while script executing

.drag_single set option when dragging a source

.enable_undo control saving of undo information

.grid, .grid_size control display and size of grid

.max_path_depth set maximum number of child rays

.painting control refresh of raytrace display

.recalc control recalculation of ray paths

.quiet_snap control use of sound when snapping

.update_on_element_drag,

.update_on_ray_drag
control recalculation of rays during dragging

Tables of commands by category

18

Protractor/Tapemeasure/Annotation and Trail commands

.annotation create an annotation

.protractor create a protractor

.protractor_options set options for selected protractors

.tapemeasure create a tapemeasure

.pause_trails suspend updating of trail objects

.reset_trails wipe all trail info, start again

.trail create a trail

.tapemeasure_options set options for selected tapemeasures

Query diagram

.child_by find handle of a child of a ray

.object_coordinates find coordinates related to an object

.object_type find object type from handle

.ray_of_source find handle of particular ray from
source

.segment_count count segments in an element

.selected_annotation,

.selected_element,

.selected_protractor,

.selected_ray,

.selected_tapemeasure,

.selected_trail

find handle of a selected object

Ray property commands

.arrow_end, .arrow_middle, .arrow_none set arrow position of selected rays or default
position

.back_project, .forward_project, .normal,

.parent_refract, .parent_reflect,

.refract, .reflect, .reflect_if_no_refract

set fertility of selected rays or default fertility

.blue, .green, .red set colour of selected rays or default colour

.childray_arrow, .childray_fertility copy default properties for user created rays into
defaults for child rays

.cycle_colour change colours of selected rays to next in
sequence R>G>B>R

.set_length set default length for selected rays of default for
created rays

.ray_diffraction set the diffraction orders at grating interactions

.white_ray set colours of rays in sequences of 3 of RGB

Tables of commands by category

19

Refractive index and wavelength commands

.material set refractive index properties by material

.refractive_index set refractive index properties numerically

.blue_index, .green_index,

.red_index
get current refractive index values or values for
selected element

.additive, .subtractive sets selected regions to add or subtract to
refractive index sum for overlapping regions

.background,

.background_material
set the background refractive index values

.thin_lenses_with_background controls if thin lenses are modified when
background refractive index is changed

.wavelengths set wavelengths of RGB

Selection commands

.all_rays, .all_elements, .all_tapemeasures,

.all_protractors .all_annotations, .all trails
select all objects of specified type

.select_child_rays select all child rays of selected rays

.select_extended begin extended selection operation

.select_group select all elements in same group as
selected elements

.select_object, unselect_object select/unselect an object by handle

.unselect_all unselect any selected objects

.unselect_annotations, .unselect_elements,

.unselect_protractors, .unselect_rays,

.unselect_tapemeasures, .unselect_trails

unselect any selected objects of specified
type

Show/Hide types of object
.blue_rays, .green_rays, .red_rays control display of rays by colour

.show_annotations,

.show_protractors,

.show_tapemeasures, .show_trails

control display of specified objects

Snap commands

.centre_snap, .end_snap,

.focus_snap, .grid_snap,

.intersect_snap, .mid_snap,

.perp_snap, .tangent_snap,

.vertex_snap

set a snap type for next mouse click

.no_snap remove any requested snap type

Tables of commands by category

20

Source commands

.auto_trace, .step, .more_steps?,

.steps_per
begin/control tracing of a source around an element

.link_by_child_rays link a point source by its child rays

.plane_source, .point_source create a plane/point source

.source_ray_count set number of rays in selected or new sources

.flip_source reverse aperture points for point source

Thin lens and paraxial mirror related commands

.converging_lens, .diverging_lens create a thin lens

.make_converging, .make_diverging change property of a thin lens

.paraxial_mirror create a paraxial spherical mirror

.paraxials_on_centre set option for style of creation

User input and control commands
.allow_drag let user continue but not complete a drag operation

.choose let user choose from a set of options

.default_input set default value of next numeric input by user

.input_limits set limits on next numeric value input by user

.mouse_limits limit region in which user can move cursor

.user_click let user click the mouse button

.user_control give user complete control

.yes_no give user a yes/no option

Window and display control
.pan_left, .pan_right, .scroll_up, .scroll_down move window around over ray diagram

.zoom_extents, .zoom_in, .zoom_out,

.zoom_previous, .zoom_reset
change scale and position of window over ray
diagram

21

22

SCRIPT COMMANDS IN ALPHABETIC ORDER

23

Notation used in command descriptions

Commands descriptions are presented in the following format:

1.name

 2.name 3argument

 4A short description of the operation performed.

 Example:

 5% Example script command sequence
 6> .name

 7See also: .other_commands

Notes:

1 The name of the command in bold. Sometimes groups of commands are described together; in this
case the commands are separated by commas.

2 If the command takes arguments then the syntax is given next. If it takes no arguments then this
line is omitted. If more than one command is being described in the same section then a syntax line
like this is used to delimit information on each command regardless of whether arguments are taken
or not.

3 Arguments appear in italics. Arguments which may be omitted are enclosed in square brackets.
Sometimes numeric arguments are shown enclosed in square brackets when the command obviously
must operate upon a number, see for example the description of .abs. Arguments indicated in this
way will be replaced by the contents of the accumulator.

4 A short description of the function performed.

5 Generally a short example is given. Almost all examples given can be executed directly without any
further additions - there are a couple of exceptions. Blank lines in examples are there intentionally as
they perform the function of forcing text displayed in the script dialog to start a new line.

6 Lines in the example which contain the command being described are indicated by a '>' character at
the left. The '>' character is not part of the script.

7 Other commands which are related or may perform similar functions are shown last.

Commands in alphabetic order

24

.abs, .sign

.abs [real]

Places the absolute value of the real in the accumulator.

.sign [real]

If real is negative then places -1 in the accumulator.
If real is positive then places 1 in the accumulator.
If real is zero then places 0 in the accumulator.

.additive, .subtractive

 Change how all selected region elements contribute to the summation of refractive index

values when regions overlap. Same as the menu items Modify -- Element > Additive
refractive index and Modify -- Element > Subtractive refractive index respectively. See the
Raytrace reference manual for more information.

.allow_drag

Allows the user to control the current drag operation. The dragging must be initiated and
terminated by the script. User control of dragging terminates when the primary mouse button is
clicked.

It is recommended that some direction should be given to the user about returning control to
the script and that the .mouse_limits command be used to set the region in which the user
can drag the point about.

Example:

 % Create a ray for the user to drag about
 .file_new
 .create_ray
 .fast_click 200 200
 .fast_click 250 250
 .=> RAY
 .finished_rays
 % Give some guidance to the user
 .new_text
 You can now drag the end of the ray about. Click on the
 primary mouse button to return to the script.
 % Set limits on user dragging
 .mouse_limits 225 150 275 250
 % Select the ray and initiate dragging
 .unselect_all
 .select_object RAY
 .fast_click 250 250
> .allow_drag
 % Return the ray to the original position and terminate drag
 .fast_click 200 200

See also: .mouse_limits, .user_click and .user_control

.all_rays, .all_elements, .all_tapemeasures, .all_protractors,

.all_annotations, .all_trails

Each of these commands selects all objects of the specified type within the ray diagram.

See also: .unselect_rays

.annotation

.annotation text

Creates an annotation with the given text. Must be followed by appropriate click type
commands to specify the base and leader points.

Example:

Commands in alphabetic order

25

 % Create an arc reflector for this example
 .file_new
 .create_surface
 .click 0 -50
 .arcseg
 .chord_tan
 .click 0 50
 .click 25 50
 .end_element
 % Create an annotation on the centre of the arc
> .annotation Centre
 .centre_snap
 .click 0 -50
 .click_rel -20 30

.anticlockwise_arc, .clockwise_arc

When creating an element and using arc segments with either the centre/end radius/end
options then these commands allow you to set the direction in which the arc is drawn. Under
manual operation this option is set using the secondary mouse button and choosing the arc
segment sub menu.

Example:

 % Create a meniscus shaped lens with arc centres specified
 .file_new
 .create_region
 .click 0 -50
 .arcseg
 .centre_end
> .anticlockwise_arc
 % Centre point at (-200,0) chord is from (0,-50) to (0,50)
 .click -200 0
 .click 0 50
> .clockwise_arc
 % Next arc centre at (-400,0) same chord as first arc
 .click -400 0
 .click 0 -50
 .end_element

See also: .arcseg and .centre_end

.arccos, .arcsin, .arctan, .arctan2

.arccos [real]
.arcsin [real]
.arctan [real]

Place the inverse trig function the real in the accumulator.

.arctan2 [real_x] [real_y]

Find the arc tangent of real_y/real_x - in four quadrants.

Example:

 % Find the arcsin of a constant value
> .arcsin 0.43
 .printf %g

 % Find the arctan of a value in a variable
 .0.43
 .=> X
 .printf %g X
 ,
> .arctan X
 .printf %g

 % Find an arctan in four quadrants
> .arctan2 -1 1
 .rad>deg
 .printf %g

Commands in alphabetic order

26

 % End of example script

Commands in alphabetic order

27

.arcseg, .conicseg, .lineseg

These commands are used to switch between the different segment types when creating an
element. Under manual control this is done using the secondary mouse button and choosing
the segment type from the popup menu.

Example:

 % Start creating a region
 .file_new
 .create_region
 % First segment is a line from (100,100) to (200,100)
 .click 100 100
 .click 200 100
 % Now switch to arc segments using the chord/tangent method
> .arcseg
 .chord_tan
 % Arc end point at (200,200)
 .click 200 200
 % Arc tangent point at (250,200)
 .click 250 200
 % Return to line segments
> .lineseg
 .click 100 200
 % And finish the element
 .end_element

See also: .create_region, .centre_end

.arrow_end, .arrow_middle, .arrow_none

Set the arrow position of any selected rays. If no rays are selected then the default arrow
position for new rays is set.

See also: childray_arrow

.auto_drag

.auto_drag element delay

element either a valid element handle or -1, see below

delay 0 Moves the point without delay
 1 Pauses at each step

Start an auto drag function. The same as clicking on the secondary mouse button and
choosing Auto drag when dragging some point of the ray diagram.

If the first arguement is a valid element handle then the autodrag function will start
immediately using that element as the path. If however the first arguement is not a valid
element handle (preferably use -1) then the drag path element must be specified by a mouse
click operation which should follow immediately.

If delay is zero then the dragging proceeds without delay. If it is non-zero then the stepping
must be controlled by the script using the .step and .more_steps? commands.

Example:

 .file_new
 .create_shape
 .fc 0 0
 .fc 100 100
 .end_element
 .=> SHAPE
 .create_ray
 .fc 10 0
 .fc 30 0
 .=> RAY
 .finished_rays
 .select_object RAY
 .object_coordinates RAY middle
 .fc X Y

Commands in alphabetic order

28

 .move 0 0
> .auto_drag SHAPE 1
 :LOOP
 .step
 .pause 300
 .more_steps? LOOP
 .click 20 0

See also: .auto_trace, .step, .more_steps ans .steps_per

.auto_trace, .step, .more_steps?, .steps_per

.auto_trace option [delay]

option 1 Move the source centre (for a point source) or base point (for a plane source)
 2 Move the first aperture point
 3 Move the second aperture point

delay 0 Moves point without delay
 other Pauses at each step

The .auto_trace command performs the same function as the menu item Modify -- Auto
trace. A source and an element (preferably a shape element) must be selected; one of the
source points (usually the centre or base point option = 1) will be stepped around the selected
element. The option argument specifies which point of the source is moved during the trace. If
delay is zero then the tracing proceeds as rapidly as possible. If delay is non-zero then the
.step and .more_steps? commands must be used; see below.

.step

If the delay argument of the .auto_trace command is non-zero then the tracing will proceed
one step at a time and the .step command must be used to perform each step. If the delay
argument is omitted then the accumulator contents are used.

.more_steps? label

If the delay argument of the .auto_trace command is non-zero then .more_steps? can be
used to control a loop containing a .step. If there are more steps to be performed in the tracing
operation the .more_steps? will branch to the label. If the tracing operation is complete then
execution continues on the next line.

.steps_per line arc conic

Sets the number of steps that will be taken along each type of segment during an .auto_trace
function. The same as using the Defaults -- Auto drag settings menu item to set these
values.

Example:

 % Assumes that an element and source have been selected
 % Tracing proceeds without delay
> .steps_per 5 10 10
> .auto_trace 1 0
 % Tracing proceeds in steps with a 500 ms delay between steps
> .auto_trace 1 1
 :LOOP
 .pause 500
> .step
> .more_steps? LOOP

See also: .drag_handles

.background, .background_material

.background R G B

Set the background refractive index values to R, G abd B for the red, green and blue
wavelengths.

.background_material Name

Commands in alphabetic order

29

Select refractive indices of a material called Name from the raytrace.mat file. There must be a
single space between the end of .background_material and the start of Name. Name may
contain spaces and is taken as everything up to the end of the line. See the reference manual
for information on background refractive indices.

.back_project, .forward_project, .normal, .parent_refract, .parent_reflect,

.refract, .reflect, .reflect_if_no_refract

.back_project [flag]
.forward_project [flag]
.normal [flag]
.parent_refract [flag]
.parent_reflect [flag]
.refract [flag]
.reflect [flag]
.reflect_if_no_refract [flag]

Set or toggle the fertility property of any selected rays. If no rays are selected then operates on
the default fertility for new rays.

If flag is zero then the specified fertility is cleared.
If flag is non-zero then the specified fertility is set.
If flag is omitted then the current fertility state is toggled.

Example:

 .create_ray
 .fast_click 0 0
 .fast_click 100 100
 .=> RAY
 .finished_rays
 .unselect_all
 % Select ray, make it always reflect but never refract
 .select_object RAY
> .reflect 1
> .refract 0
 .unselect_all
 % Turn on normals for all rays created in future
> .normal 1

See also: .childray_fertility

.blue, .green, .red

Sets the colour of any selected rays. If no rays are selected then sets the default colour for
newly created rays.

See .create_ray for an example.

.blue_index, .green_index, .red_index

If no elements are selected then places the value of the default refractive index for the
specified colour into the accumulator. If an element is selected the places the refractive index
for that element and colour in the accumulator.

.blue_rays, .green_rays, .red_rays

.blue_rays [flag]
.green_rays [flag]
.red_rays [flag]

Control whether rays of specified colour a visible or not.

If flag is zero then rays of specified colour are hidden.
If flag is non-zero then rays of specified colour are shown.
If flag is omitted then visibility is toggled.

.button_bar

.button_bar state [filename]

Commands in alphabetic order

30

state 0 Turns the button bar display off
 1 Turns on a horizontal button bar
 2 Turns on a vertical button bar

filename If given Raytrace searches the work directory followed by the system file

directory for filename and attempts to load it as a button bar.
.call, .return

.call filename

Transfers execution to the start of the script file filename. Execution returns to the current
script when a .return statement is encountered.

If the maximum nesting depth for script routines is exceeded then the error message "Script
stack overflow" will be reported.

There is no facility to explicitly pass argument to called scripts. However values may be
"passed" in the global variables. This requires some discipline in using variable names and
some comments at the start of the script indicating the variables that are expected, any that
are created and any that are cleared is usually a good idea.

.return

If the script has been called from another script then execution returns to the line following the
.call statement. If the script was run by the user then it closes the script dialog box.

Example:

Calling script

 % Script calls a sub function script to create a polygon
 .file_new
 .5
 .=> POLYN
 .50
 .=> POLYRAD
 .0
 .=> POLYCENX
 .=> POLYCENY
> .call polygon.rsc
 .select_object POLY
 .make_region

Called script in file "polygon.rsc"

 % Script draws a closed polygon shape element
 % Expects:
 % POLYN = number of sides
 % POLYCENX = centre x coord
 % POLYCENY = centre y coord
 % POLYRAD = polygon inscribed in circle of radius
 % Creates:
 % POLY = handle of polygon element
 % Clears:
 % POLYCENX, POLYCENY, POLYANG, POLYINC
 % On return POLYN will contain 0.
 .POLYN
 .if< 3 NOGO
 .360
 ./ POLYN
 .DEG>RAD
 .=> POLYINC
 .POLYN
 .+ 1
 .=> POLYN
 .0
 .=> POLYANG
 .create_shape
 :MORESIDES
 .cos POLYANG
 .* POLYRAD
 .+ POLYCENX

Commands in alphabetic order

31

 .=> POLYX
 .sin POLYANG
 .* POLYRAD
 .+ POLYCENY
 .=> POLYY
 .fc POLYX POLYY
 .POLYANG
 .+ POLYINC
 .=> POLYANG
 .--if!=0 POLYN MORESIDES
 .end_element
 .=> POLY
 .clear_var POLYCENX POLYCENY POLYANG POLYINC
 :NOGO
> .return

See also: .close_script, .script

.centre_end, .chord_tan, .radius_end

.centre_end Set the method of specifying an arc segment to Centre/End
.chord_tan Set the method of specifying an arc segment to End/Tangent
.radius_end Set the method of specifying an arc segment to Radius/End

Note that this setting is "sticky" it persists from one element creation to the next so don't
assume it is any particular state.

Example:

 % Create surface of three arcs spec'd in different ways
 .create_surface
 .click 0 0
 % First arc has chord from (0,0) to (0,100)
 .arcseg
> .chord_tan
 .click 0 100
 % Tangent such as to make a semi-circle
 .click 50 0
 % Second arc has centre at (-50,0) and ends at (-100,100)
> .centre_end
 .anticlockwise_arc
 .click -50 0
 .click -100 100
 % Third arc has radius specified as 300 and ends at (-100,0)
> .radius_end
 .clockwise_arc
 .click_rel 300 0
 .click -100 0
 .end_element

See also: .arcseg

.centre_snap, .end_snap, .focus_snap, .grid_snap, .intersect_snap,

.mid_snap, .no_snap, .perp_snap, .tangent_snap, .terminal_snap, .vertex_snap

Specify that the next point will be a snap. Behaves in the same manner as under manual
control - that it the cursor must be placed over the object that is to be snapped to. You can use
any of .click, .click_rel, .fast_click or .fast_click_rel commands to position the cursor for the
snap.

.grid_snap flag

If flag is zero then turns of the grid snap
If flag is non-zero then turns on the grid snap
If flag is omitted then toggles the state of the grid snap

.no_snap may be used to ensure that the user has not left a snap in force when the script
starts running or after using a .user_control command.

Examples:

Commands in alphabetic order

32

You can often find appropriate coordinates at which to place the cursor using the
.object_coordinates command .

 % Create an arc for this example
 .create_surface
 .fast_click 0 0
 .arcseg
 .chord_tan
 .fast_click 0 100
 .fast_click 50 75
 .end_surface
 .=> ARC
 % Find mid point of arc - coords put in X,Y
 .object_coordinates ARC 1 middle
 % Snap a tapemeasure between the centre and mid points
 .tapemeasure
> .centre_snap
 .click X Y
> .mid_snap
 .click X Y

In the case of an intersect snap you may want to select the two rays by means other that
"clicking" you can do this using a sequence along the following lines:

 % Select the two rays by some means like this
 .select_object RAY1 RAY2
 % Specify the snap
> .intersect_snap
 % "Press" the control key
 .control_key 1
 % Click somewhere out in no-mans land where there are no rays
 .fast_click -100000 -100000
 % "Release" the control key
 .control_key 0

See also: .object_coordinates

.change_conic

.change_conic element segment

element object handle of existing element

segment segment number of the segment to be modified

Changes the conic settings for the specified segment of the specified element to those
currently set as the default values (see .conic_options). The segment number is zero offset;
that is the first segment in the element is numbered 0.

Three self explanatory errors may be reported:
 Specified object is not an element
 Specified segment number does not exist
 Specified segment is not a conic

Example:

 % Create surface with a conic, pause then change conic setting
 .conic_options focus_end_axis
 .create_surface
 .fast_click 100 100
 .fast_click 0 100
 .conicseg
 .fast_click -20 50
 .fast_click -50 50
 .fast_click 0 0
 .lineseg
 .fast_click 100 0
 .end_element
 .=> SURFACE

Commands in alphabetic order

33

 % Wait until Continue is pressed so that initial shape is
 visible
 .pause
 % Make the conic a parabola
 .conic_options vertex_end_eccent 1
> .change_conic SURFACE 1

See also: .conic_options

.childray_arrow

Copies the current default arrow position for user created rays to the default for child rays. Use
in a similar fashion to .childray_fertility.

Use in the same manner as childray_fertility.

See also: .childray_fertility and .arrow_end

.childray_fertility

Copies the current default ray fertility for user created rays to the default for child rays. Hint:
Set the child ray fertility first so that you don't have to reset the default fertility.

Example:

 % To set all child rays to reflect always
 % Set the default fertility for created rays
 .reflect 1
 % Then copy it to the childray fertility
> .childray_fertility
 % Then set the real desired default fertility for created rays
 .reflect_if_no_refract 1

See also: .childray_arrow and .back_project

.child_by

.child_by ray option1 [option2] ... [optionN]

ray is the object handle of a ray

options are one of: reflection
 refraction
 normal
 parent
 forward_proj
 back_proj
 parent_refraction
 parent_reflection
 diffraction N

Finds the child of the specified ray that is descended by the specified set of fertility options.
Places the object handle of this child ray in the accumulator. If the specified descendent ray
does not exist then places -1 in the accumulator. If the diffraction option is used then the order
of the diffracted ray must be specified too.

Example:

 % Create a slab prism
 .file_new
 .create_region
 .click -100 -50
 .click 100 -50
 .click 100 50
 .click -100 50
 .end_element
 .set_length 50
 % Hit it with a ray
 .create_rays
 .click -25 100
 .click 0 50

Commands in alphabetic order

34

 .=> INCIDENT
 .finished_rays
 % Find the handle of the ray within the prism
> .child_by INCIDENT refraction
 .=> REFRACTED
 % And reflect it
 .select_object REFRACTED
 .reflect
 % Find the ray coming back out the top of the prism
> .child_by INCIDENT refraction reflection refraction
 .=> FINAL
 % And set its arrow position to the end
 .unselect_all
 .select_object FINAL
 .arrow_end
 .unselect_all

Commands in alphabetic order

35

.choose

.choose N label1 ... labelN

N An integer between 1 and 10 inclusive

labeln Script label

Presents the user with N buttons labelled A,B,C etc. When the user clicks on one of these
buttons execution is transferred to the corresponding label within the script.

Example:

 % Give the user some prompting information
 .new_text
 Choose on of the possible options:

 A -- Possibility 1

 B -- Possibility 2

 C -- Possibility 3

 D -- Skip all
 % Display the choice buttons
> .choose 4 A B C D
 :A
 .new_text
 You selected possibility 1.
 .goto D
 :B
 .new_text
 You selected possibility 2.
 .goto D
 :C
 .new_text
 You selected possibility 3.
 :D
 % Rest of script follows

See also: .if==, .goto and .yes_no

.ck, .ckr

See .click

.clear_all

Same function as choosing the menu item Clear -- All. It clears everything from the ray
diagram without changing zoom or other settings.

See also: .clear_rays, .delete and .file_new

.clear_rays, .clear_elements, .clear_tapemeasures, .clear_protractors,

.clear_annotations, .clear_trails

Same functions as available in the Clear menu. Clears all objects of specified type from the
ray diagram.

See also: .clear_all and .delete

.clear_var

.clear_var [name] ... [nameN]

name is the name of a script variable

Clears a variable or variables so that they no longer exist. If no argument is given then all
variables are cleared. It is a good idea when starting a new script (that is not going to be called

Commands in alphabetic order

36

by other scripts) with a .clear_var command so that your variable space is not cluttered up.
There is a limit of 50 variables so clearing unused ones make sense.

Example:

 % Clear all variables
 .clear_var
 .2
 .=> X
 .3
 .=> Y
 .X
 .* Y
 .=> Z
 % Clears variables X and Y
> .clear_var X Y

See also: .=>

.click, .click_rel, .ck, .ckr

.click [realx] [realy]
.ck [realx] [realy]

Perform the same function is as if the cursor was moved to the coordinates (realx,realy) and
the primary mouse button was clicked. This is the way coordinates are specified to the various
commands such as .create_element etc.

.ck is a synonym for .click - its just shorter to type.

The cursor is actually moved on the screen and a "click" cursor is displayed briefly to indicate
the action taking place. The cursor movement is timed to take about one second to reach the
final position. Use this command when you want the user to see the clicking action explicitly;
for example in a script illustrating the actual functioning of Raytrace. Use .fast_click if you just
want to perform a mouse click without the user noticing.

It does not matter if the coordinates lie within the Raytrace window or not.

.click_rel [realdx] [realdy]
.ckr [realdx] [realdy]

Like click but (realdx,realdy) specify a displacement relative to the last mouse click through
which the cursor is moved.

.ckr is a synonym for .click_rel

Example:

 % Example of creating a ray from (10,30) to (110, 230).
 .create_ray
> .click 0 0
> .click_rel 100 200
 .finished_rays

See also: .fast_click and .move

.clockwise_arc See .anticlockwise_arc

.close_script

Terminates the current script and closes the script dialog box.

See also: .return

.conicseg See .arcseg

.conic_options

.conic_options option [ecc]

Commands in alphabetic order

37

option is one of focus_end_axis
 focus_vertex_endangle
 vertex_axis_eccent
 vertex_end_eccent
 focus_end_eccent

ecc is the eccentricity. Required only for the last three options

Sets the conic options (see the Raytrace reference manual for a full description) for newly
created conics. The five key words correspond to the five options presented in the dialog box
started by the menu item Defaults -- Conic Settings.

If an invalid keyword is used then the error "Invalid conic option" is reported.

See .change_conic for an example.

See also: .change_conic

.control_key, .shift_key

.control_key [flag]
.shift_key [flag]

Set the apparent state of the control or shift keys - this is independent of the actual state of the
keyboard. If flag is omitted then the current state is toggled. These commands should always
be used in pairs within a script so as not to change the state on the user.

Example:

 % User will be given drag control with fine drag option set
> .shift_key 1
 .allow_drag
> .shift_key 0

.converging_lens, diverging_lens

Create a thin lens element with the specified convergence. Must be followed by appropriate
click type commands to specify the position, height and focal length of the lens. Usage is
subject to the setting of the menu item Create -- Par-axials on centre which may be set using
the command .paraxials_on_centre.

When the lens is completed its object handle is placed in the accumulator for later reference.

Example:

 % Use the centre/height specification for the lens
 .paraxials_on_centre 1
> .converging_lens
 % Centre point
 .click 0 0
 % Height and orientation
 .click 0 100
 % Focal length
 .click 200 0
 % Store handle for later use
 .=> LENS
 .pause
 .unselect_all
 .select_object LENS
 .make_diverging

See also: .paraxials_on_centre

.cos, .sin, .tan

.cos [real]
.sin [real]
.tan [real]

Place the trig function of real in the accumulator.

Commands in alphabetic order

38

Example:

 % Find the sine of a constant value (in radians)
> .sin 27.5
 .printf %g

 % Find the tangent of a value in a variable
 .45.67
 .=> THETA
> .tan THETA
 .printf %g

See also: .arccos

.create_grating

.create_grating [type spacing orders]

type is one of transmission or reflection
spacing is the line spacing of the grating in metres
orders is a list of the diffraction orders to be generated from this grating i.e. numbers between -
3 and +3 (Note that the orders setting can be overridden by the ray fertility setting

Create a diffraction grating element. Must be followed by appropriate click type commands. If
no parameters are given on the command line then the user is prompted for the grating
options.

Example:

> .create_grating transmission 1.8e-6 -2 -1 0 1 2

See also: .converging_lens and .paraxial_mirror

.create_iris

Create an iris element. Must be followed by appropriate click type commands.

See also: .converging_lens and .paraxial_mirror

.create_ray, create_rays, .finished_rays

Begin creation of rays. Must be followed by appropriate click type commands to specify the
coordinates of the ray(s). As each ray is completed its object handle is placed in the
accumulator. When all desired rays are created use the command .finished_rays.

.create_rays is a synonym for .create_ray - it save remembering whether it should be plural or
not.

Example:

 % Create three rays for fun
> .create_ray
 .red
 .click 0 0
 .click 100 0
 .=> RAY1
 .green
 .click 0 0
 .click 100 -100
 .=> RAY2
 .blue
 .click 0 0
 .click 100 100
 .=> RAY3
 .finished_rays
 .select_object RAY1
 .arrow_end
 .unselect_all
 .pause
 % And now delete them one at a time
 .select_object RAY1

Commands in alphabetic order

39

 .delete
 .pause
 .select_object RAY2
 .delete
 .pause
 .select_object RAY3
 .delete

Commands in alphabetic order

40

create_region, .create_shape, .create_surface, .create_screen, .end_element

Begin creation of an element of specified type. Must be followed by appropriate click type
commands to specify the coordinates of the vertices. Complete the element using the
.end_element command.

When the element is completed the object handle of the element is placed in the accumulator.
It may then be stored in a variable to allow later reference to the element.

Example:

 % Create a simple square prism then delete it
 .new_text
 Click where you want the lower left corner of the square
 .user_click
> .create_region
 .fast_click_rel 0 0
 .fast_click_rel 100 0
 .fast_click_rel 0 100
 .fast_click_rel -100 0
 .end_element
 .=> SQUARE
 .pause
 .new_text
 .unselect_all
 .select_object SQUARE
 .delete

See also: .arcseg, .converging_lens and .paraxial_mirror

.cut, .copy, .paste

These three commands are the same as using the menu items Edit -- Cut, Edit -- Copy and
Edit -- Paste. They must be followed by an appropriate click type command to specify the
base point coordinates except in the case of .copy when no objects are selected since this
does not require a base point.

Example:

 % Select all elements and rays
 .all_elements
 .all_rays
 % Make a copy with origin as base point
> .copy
 .fast_click 0 0
 % Paste another copy in, moved through displacement (100,100)
> .paste
 .fast_click 100 100

.cycle_colour

Changes the colours of all selected rays one step in the sequence red->green->blue->red
starting at their current colour. Same as pressing Shift+F2 in manual control.

See also: .blue and .white_ray

.default_input

.default_input [real]

Sets the default value which will appear in the edit control when a userinput keyword is used
as an argument to a command.

Example:

 % Ask the user for a numerical value
 .0
 .=> RADIUS
 .new_text
 Please enter a value for the radius
 % Set default input value to 150

Commands in alphabetic order

41

> .default_input 150
 .RADIUS userinput

See also: .input_limits

.deg>rad, .rad>deg

.deg>rad [real] Converts the real argument from degrees to radians
.rad>deg [real] Converts the real argument from radians to degrees

Note that all trig functions use arguments in radians and inverse trig functions return values in
radians.

Example:

 % Convert a value in the accumulator to radians and print it
 .123.4
> .deg>rad
 .=> VALUE
 .printf %g VALUE

 % Convert value to degrees and display
> .rad>deg VALUE
 .printf %g

.delete

Deletes all selected objects from the ray diagram

See also: .clear_all, .clear_annotations

.diverging_lens See .converging_lens

.drag_handles

.drag_handles [flag]

If flag is 0 then drag handles are not displayed in selected objects while the script is running.
If flag is non-zero then drag handles are displayed on selected objects.
If flag is omitted then the state is toggled.

Controls whether drag handles are displayed during the script. This is useful if you want to
perform an .auto_trace without the drag handles being displayed.

See also: .auto_trace

.drag_single

If a drag operation is performed on a source then using this command before the drag is
initiated sets the option of dragging a single ray. If this is not used then the operation defaults
to dragging all the rays from the source. Applies only to the next source drag operation.

Example:

 % Create a point source for example
 .source_ray_count 10
 .point_source
 .fast_click 0 0
 .fast_click 100 0
 .fast_click 0 100
 % Save handle to source for later use
 .=> SRC
 % Select the source rays with next click
 .fast_click 0 0
 % Drag initiated by the next click will operate on all the rays

Commands in alphabetic order

42

 .click 0 0
 % Move centre of source
 .click -50 50
 .pause 1000
 .unselect_all
 % Find the fourth ray of the source (0 based count)
 .ray_of_source SRC 3
 .=> RAY3
 .select_object RAY3
 % Find the end of the ray
 .object_coordinates RAY3 end
 % The next drag will only affect the one ray
> .drag_single
 % Click on end of 4th ray to drag it
 .click X Y
 .click 200 -50

.element_off, .element_on

Same functions as the menu items Modify -- Element > Turn Off and Modify -- Element >
Turn On. These commands operate on all selected elements. If elements are turned off then
they still appear in the ray diagram but they do not interact with rays.

.enable_undo

.enable_undo flag

If flag is 0 then undo information is not saved during the script.
If flag is non-zero then undo information is saved.
If flag is omitted then the state is toggled.

Normally Raytrace saves undo information in a file before every operation. This is relatively
quick and you are unlikely to notice the short delay involved when using Raytrace manually.
However when many operations are performed in sequence in a script there is rarely any need
to save undo information and the delays accumulate and become noticeable. This command
allows you to stop the saving of undo information so that scripts execute quicker. This has no
effect on the undo function outside the script facility but does affect the use of undo when
control is passed to the user with .user_control.

See the section on a typical script prototype for more information.

Example:

> .enable_undo 0
 % Perform functions within script where undo is not needed
 ...
 % Enable undo before giving the user control
> .enable_undo 1
 .user_control

See also: .undo

.end_element

Terminates any of .create_region, .create_surface or .create_shape commands.

See .create_region for more information and for an example.

.end_snap See .centre_snap

.exit_raytrace

Same as choosing File -- Quit; closes the Raytrace application. Don't confuse with
.close_script.

.exp, .log_e., .10^, log_10

Commands in alphabetic order

43

.exp [real] Place the inverse natural logarithm of real in the accumulator.
.log_e [real] Place the natural logarithm of real in the accumulator.
.10^ [real] Place the inverse logarithm to base 10 of real in the accumulator.
.log_10 [real] Place the logarithm to base 10 of real in the accumulator.

Example:

 .123.4
> .log_e
 .=> LOGVAL
 .printf %g

> .exp LOGVAL
 .printf %g

.explode, .join

.explode

Same function as the menu items Modify -- Element > Explode. Breaks an element up into
individual segments.

.join

Same function as and Modify -- Element > Join. Joins elements together into a single
element.

See the Raytrace reference manual for more information on these functions.

.fast_click, .fast_click_rel, .fc, .fcr

.fast_click [realx] [realy]
.fc [realx] [realy]
.fast_click_rel [realdx] [realdy]
.fcr [realdx] [realdy]

Basically the same commands as .click and .click_rel except the cursor is not moved on the
screen and hence these commands are much faster. Use these commands when you just want
to specify points without the user seeing the cursor movements.

.fc is a synonym for .fast_click its just faster to type.
.fcr is a synonym for .fast_click_rel

See .fast_move for an example.

See also: .click

.fast_move, .fast_move_rel

.fast_move [realx] [realy]
.fast_move_rel [realdx] [realdy]

Basically the same commands as .move and .move_rel except the cursor is moved
immediately to the new position. Use this function to ensure the cursor is in the desired
position when you hand over control to the user with a function like .allow_drag.

Example:

 .create_ray
 .fc 0 0
 .fc 100 100
 .finished_rays
 .select_object
 .fc 100 100
 % Without the next line the cursor could be anywhere.
> .fast_move 100 100
 .allow_drag
 .ck 100 100

Commands in alphabetic order

44

See also: .click, .fast_click and .move

.fc See .fast_click

Commands in alphabetic order

45

.file_new

Same function as the menu item File -- New. See the Raytrace reference manual for a full
description. Basically it clears the ray diagram and resets some default parameters. It's good
idea to use this at the start of scripts which create their own ray diagrams.

See also: .clear_all

.finished_rays See .create_ray

.focus_snap See .centre_snap

.forward_project See .back_project

.goto

.goto LABEL

Transfers execution of the script to the line following :LABEL where LABEL is a label name of
your choice. If there is no occurrence of :LABEL in the script file then the error message
"Missing label" is reported.

See .choose for an example

See also: .choose, .if== and .yes_no

.green See .blue

.green_index See .blue_index

.green_rays See .blue_rays

.grid, .grid_size

.grid [flag]

If flag is zero, turns the display of the grid off.
If flag is non-zero then turns the display of the grid on.
If flag is omitted, toggles the display of the grid.

The current state of the grid display is put in the accumulator.

.grid_size realx realy

Sets the grid spacing to realx in the x direction and realy in the y direction

See also: .grid_snap

.grid_snap See .centre_snap

.group, .ungroup

.group
.ungroup

Same functions as the menu items Modify -- Element > Group and Modify -- Element >
Ungoup. See the Raytrace reference manual for more information.

.if==, .if!=, .if<=, .if>=, .if<, .if>

Commands in alphabetic order

46

.if== real LABEL Transfer if accumulator equal to real.

.if!= real LABEL Transfer if accumulator not equal to real.

.if<= real LABEL Transfer if accumulator less than or equal to real.

.if>= real LABEL Transfer if accumulator greater than or equal to real.

.if< real LABEL Transfer if accumulator less than real.

.if> real LABEL Transfer if accumulator greater than real.

These commands provide conditional transfer of execution. The contents of the accumulator
are compared to real. If the condition is met then execution is transferred to the line following
:LABEL in the script file. If :LABEL does not exist then the error message "Missing label" is
reported.

Example:

 % Turn off the arrow on a user selected ray
 .unselect_all
 :RETRY
 .new_text
 Select a ray by clicking on it somewhere.
 .user_click
 .selected_ray
> .if!= -1 OK
 .new_text
 You have not selected a ray. Click on Continue to try again.
 .pause
 .goto RETRY
 :OK
 .arrow_none
 .close_script

See also: .choose, .goto, .yes_no and .--if!=0

.input_limits

Sets the limits of values which will be accepted from the user in response to the use of the
userinput keyword. If the user enters a value outside the set range then the appropriate limit
is used. In the example shown below, if the user enters a value less than 50 then 50 will be
used as the radius, if a value greater than 1000 is entered then 1000 will be used.

Example:

 % Ask the user for a numerical value
 .0
 .=> RADIUS
 .new_text
 Please enter a value for the radius
 % Set default input value to 150
 .default_input 150
 % Set acceptable limits to between 50 and 1000 inlc.
> .input_limits 50 1000
 .RADIUS userinput

See also: .default_input

.intersect_snap See .centre_snap

.join See .explode

.lastclick.x, .lastclick.y

See the section "The script calculator" for info on this keyword.

.lineseg See .arcseg

.link_by_child_rays

Commands in alphabetic order

47

The same function as Modify -- Source > Link point source via child rays. A point source
must be selected (by having one of its rays selected) and two child rays of its extreme ray must
be selected before using this command. Must also be followed by appropriate click type
commands to set the two aperture points through which the child rays will be forced to pass.

Example:

 % What does the eye see through a simple magnifier
 .file_new
 .enable_undo 0
 .create_region
 .fc 0 60
 .arcseg
 .chord_tan
 .fc 0 -60
 .fc -30 -60
 .fc 0 60
 .fc 30 60
 .end_element
 .=> LENS
 % Create an "object" shape to the left of the lens
 .create_shape
 .fc -80 20
 .fc -80 0
 .fc -100 0
 .fc -100 20
 .fc -80 20
 .end_element
 .=> OBJECT
 % Create a point source with two rays coming from the "object"
 .set_length 200
 .source_ray_count 2
 .point_source
 .fc -80 20
 .fc 0 -30
 .fc 0 30
 .=> SRC
 % Create an eye by calling supplied script
 .180
 .=> EYEX
 .30
 .=> EYEY
 .180
 .=> ANGLE
 .call eye.rsc
 % Now finally get to link the source via its child rays.
 % First select the source
 .select_object SRC
 % Select the transmitted child rays of the extreme source rays
 .ray_of_source SRC 0
 .=> RAY
 .child_by RAY refraction refraction
 .=> RAY1
 .select_object
 .ray_of_source SRC 1
 .=> RAY
 .child_by RAY refraction refraction
 .=> RAY2
 .select_object
> .link_by_child_rays
 .click 180 23
 .click 180 33
 % Backproject rays entering eye and create a trail to
 % show what the eye sees
 .unselect_all
 .select_object RAY1 RAY2
 .back_project 1
 .trail
 .intersect_snap
 .control_key 1
 .fc 10000 10000
 .control_key 0
 % Trace around the object
 .drag_handles 0

Commands in alphabetic order

48

 .unselect_all
 .select_object SRC OBJECT
 .auto_trace 1 0
 .drag_handles 1
 .enable_undo 1

.link_segments, .link_move, .link_stretch, .unlink_segments

.link_segments

The same function as the menu item Modify -- Link segments. Must be followed by
appropriate click type commands to select the segments which will be linked. See the Raytrace
reference manual for more information on linking segments of elements.

.unlink_segments

The same function as Modify -- Unlink segments. Unlinks any segment links on all selected
elements.

.link_move
.link_stretch

When using Modify -- Link segments in manual control you are presented with a dialog box
asking you to select from two options; move or stretch the linked element. These commands
can be used prior to .link_segments in a script to select these options.

Example:

 % Create a plano-convex cemented doublet similar to the
 % one in the Tutorial manual tutorial.
 % Create left part of the doublet
 .create_region
 .fc -50 60
 .arcseg
 .chord_tan
 .fc -50 -60
 .fc 10 -60
 % Second arc
 .fc -50 60
 .fc -100 60
 .end_element
 .=> LEFTPART
 % Create the right part of the doublet
 .create_region
 .fc 50 60
 .fc 30 60
 .arcseg
 .fc 30 -60
 .fc 90 -60
 .lineseg
 .fc 50 -60
 .end_element
 .=> RIGHTPART
 % Set the linking option
> .link_move
 % And start the linking process
> .link_segments
 % Where to click on the left lens (middle of first segment)
 .object_coordinates LEFTPART 1 middle
 .click X Y
 % Where to click on the right lens (middle of second segment)
 .object_coordinates RIGHTPART 2 middle
 .click X Y
 % It is done, you can now set the refractive indices.
 .close_script

.lock, .lock_x, .lock_y, .unlock

.lock Lock all selected elements so they cannot be dragged.
.lock_x Lock all selected elements so they can only be dragged in the y direction.
.lock_y Lock all selected elements so they can only be dragged in the x direction.

Commands in alphabetic order

49

.unlock Remove any locks placed on all selected elements.

Same functions as the menu items in the menu Modify -- Element > Lock >.

Example:

 % Lock a user selected element
 .unselect_all
 :RETRY
 .new_text
 Select a element by clicking on it somewhere.
 .user_click
 .selected_element
 .if!= -1 OK
 .new_text
 You have not selected an element.

 Click on Continue to try again.
 .pause
 .goto RETRY
 :OK
> .lock
 .close_script

.log_e, .log_10 See .exp

.make_converging, .make_diverging

Same functions as the menu items Modify -- Element > Make Converging and Modify --
Element > Make Diverging. Operates on all selected thin lens type elements to make them
into converging/diverging lenses respectively.

.make_region, .make_screen, .make_shape, .make_surface

Same functions as the menu items in Modify -- Element > Change to >. Operates on all
selected elements (other than par-axial type elements) to turn them into the specified type of
element.

See also: .create_region

.material

.material Name

Select refractive indices of a material called Name from the raytrace.mat file. There must be a
single space between the end of .material and the start of Name. Name may contain spaces
and is taken as everything up to the end of the line. If any elements are selected then their
refractive indices are changed to the values of the material. If no elements are selected then
the default values for new elements are set.

Example:

 .create_region
 .fc 0 0
 .fc 100 0
 .fc 50 100
 .end_element
 .select_object
 % Set refractive index of element just created and selected
> .material heavy flint
 .unselect_all
 % Set default refractive indices
> .material quartz

See also: .refractive_index

.max, .min

Commands in alphabetic order

50

.max real
.min real

Places the maximum/minimum of the contents of the accumulator and real into the
accumulator

Example:

 .123.4
 .max 456
 .printf %g

 % End of example

.max_path_depth

.max_path_depth [integer]

Sets the maximum depth to which child rays will be generated from any user created ray to
integer. Same function as the menu item Options -- Maximum path depth....

.mid_snap See .centre_snap

.mirror

Same function as the menu item Modify -- Mirror. Must be followed by two click type
commands to specify the end points of the mirror line. Mirrors all selected objects about the
specified line.

Example:

 % Create a simple element then mirror it
 .create_surface
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> CORNER
 .select_object CORNER
> .mirror
 .click 0 0
 .click 0 100
 .unselect_all

See also: .move_selection, .rotate and .scale

.more_steps? See .auto_trace

.mouse_limits

.mouse_limits xmin ymin xmax ymax

Limits the region in which the user can drag the mouse when allowed by an use of .allow_drag
or .user_click. To allow dragging without limits, set xmin, xmax etc to very big values like 1E5.

See .allow_drag for an example

See also: .allow_drag and .user_click

.move, .move_rel

.move [realx] [realy]

Commands in alphabetic order

51

Moves the cursor on the screen to the specified coordinates (realx,realy). The movement is
timed to take about one second.

.move_rel [realdx] [realdy]

Same as move but the coordinates are specified relative to the most recent mouse click.

Use these commands to move the cursor around so that the user can follow what is happening
in demo type scripts.

See also: .click and .fast_move

Commands in alphabetic order

52

.move_selection

Same function as the menu item Modify -- Move. Must be followed by two click type
commands to specify the "from" and "to" points. Moves the selected objects so that the "from"
point is mapped onto the "to" point.

Example:

 % Create a simple element then move it
 .create_surface
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> CORNER
 .select_object CORNER
> .move_selection
 .click 0 0
 .click 100 100
 .unselect_all

See also: .mirror, .rotate and .scale

.new_text

Clears any existing text from the script dialog box display. New text is added to the display by
including it within the script. Once the available space in the script dialog fills with text further
text will be lost from view. You need to keep comments or directions short and direct and use
.new_text frequently.

Example:

> .new_text
 Click on continue to see more text appear.
 .pause

 Now click on continue to clear the text and replace it with
 something new.
 .pause
> .new_text
 Something new.

.normal See .back_project

.no_snap See .centre_snap

.object_coordinates

In general, finds the coordinates of some point on an object and places them in the script
variables X and Y. These variables are created if necessary. The syntax depends upon the
object type as described below. The first argument is always an object handle which is placed
in the accumulator when an objected is created.

.object_coordinates element segment type
 element object handle of an element
 segment segment number - first segment is numbered 1
 type one of end middle centre tangent focus vertex

 To obtain the starting point of an element use a segment number of 0 and type = end,

i.e. .object_coordinates element 0 end

 When using with a thin lens element which has two foci use:
 .object_coordinates element 0 focus to obtain the first focus point
 and .object_coordinates element 1 focus to obtain the second focus point.

 When using with an iris element you can find any of the four end points using
 .object_coordinates element n end where n = 0,1,2 or 3
 the only other point on an iris that you can find is the middle of the aperture using

Commands in alphabetic order

53

 .object_coordinates element 0 middle

.object_coordinates ray type
 ray object handle of a ray
 type one of start middle end

.object_coordinates tapemeasure type
 tapemeasure object handle of a tapemeasure
 type one of end_one end_two middle cartesian polar lead_to

 type = cartesian places the (x,y) displacement of the ruler in the variables X and Y
 type = polar places the length of the tapemeasure in X and the angle in degrees Y

.object_coordinates protractor type
 protractor object handle of a protractor
 type one of centre end_one end_two angle lead_to

 type = angle places the angle in radians in X and in degrees in Y

.object_coordinates annotation type
 annotation object handle of an annotation
 type one of base lead_to

.object_coordinates trail
 trail object handle of a trail

 Always places the coordinates of the current position of the trail in X,Y. There are no

"type" options.

.object_coordinates point_source type
 point_source object handle of a point source
 type one of centre aperture_one aperture_two

.object_coordinates plane_source type
 plane_source object handle of a plane source
 type one of base aperture_one aperture_two

There are two errors which may be reported, these are self explanatory:
 "Invalid object handle" and "Invalid key word for .object_coordinates"

Example:

 % Demonstrate first on a region element
 .create_region
 .fc 0 0
 .fc 100 0
 .arcseg
 .chord_tan
 .fc 50 100
 .fc 150 100
 .conicseg
 .fc 0 120
 .fc 0 150
 .fc -50 100
 .end_element
 .=> REGION
 % Find the starting point
> .object_coordinates REGION 0 end
 .printf %g X
 ,
 .printf %g Y

 % Find the end of the first side
> .object_coordinates REGION 1 end
 .printf %g X
 ,
 .printf %g Y

 % Find the centre of the arc segment
> .object_coordinates REGION 2 centre
 .printf %g X
 ,
 .printf %g Y

Commands in alphabetic order

54

 % Find the vertex of the conic segment
> .object_coordinates REGION 3 vertex
 .printf %g X
 ,
 .printf %g Y

 % Find the middle of the closing segment
> .object_coordinates REGION 4 middle
 .printf %g X
 ,
 .printf %g Y

 .pause
 .select_object REGION
 .delete
 % Now demonstrate on a ray
 .new_text
 .create_ray
 .fc 10 10
 .fc 120 130
 .=> RAY
 .finished_rays
> .object_coordinates RAY middle
 .printf %g X
 ,
 .printf %g Y

 .pause
 .select_object RAY
 .delete

.object_type

.object_type handle

handle is an object handle

Determines the type of object belonging to the handle. Places the type in the accumulator
where type is one of:

-1 invalid handle
1 region element
2 surface element
3 shape element
4 converging thin lens element
5 diverging thin lens element
6 paraxial mirror element
7 annotation
8 protractor
9 tapemeasure
10 trail
11 point source
12 plane source
13 screen element
14 iris element
15 grating

Example:

 .create_shape
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> OBJECT
> .object_type OBJECT
 .printf %g
 .pause
 .select_object OBJECT
 .make_region
> .object_type OBJECT
 .printf %g

Commands in alphabetic order

55

 .pause
 .delete
> .object_type OBJECT
 .printf %g
 % End of example script

.open, .save, .save/d

.open filename

Same as using File -- Open. Opens an existing ray file and displays it.

.save filename
.save/d filename

Same as using File -- Save As. Saves current ray diagram under in a file called filename. This
command does not change the current filename as displayed in the raytrace window title bar.

.save/d saves the file but without compacting the internal database; this allows the ray
diagram to be reload in exactly the same state as prior to the save. The saved file is generally
much larger when using .save/d so only use it when necessary - see the section on strategies
for writing scripts.

filename may contain a path and should include an extension.

All script variables are saved and loaded with these commands. A corollary is that all script
variables existing at the time of an ".open" are wiped and replaced by whatever variables were
in existence at the time file was saved.

Example:

> .open disperse.ray
> .save newdisp.ray

.optical_length, .physical_length

Calculate and sum either the optical length or the physical length of all selected rays and place
the result in the accumulator. The optical length of a ray is the physical length multiplied by the
refractive index of the medium in which it is contained.

.painting

.painting [flag]

Normally Raytrace updates its display after every function. When using Raytrace manually the
delay caused by repainting the window is negligible however, when many functions are
performed in sequence in a script the delays accumulate and can be annoying. This command
allows you to stop the repainting of the window and thus speed up script execution; only
painting when the desired display is ready.

If flag is 0 then turns painting off.
If flag is non-zero then turns painting on.
If flag is omitted then toggles the painting state.

The updated painting state is placed in the accumulator.

When the painting state is re-enabled the Raytrace window is automatically repainted.

Example:

 % Turn painting off to speed script up
> .painting 0
 .create_region
 .fc 0 0
 .fc 100 0
 .fc 50 100
 .end_element
 .source_ray_count 10

Commands in alphabetic order

56

 .point_source
 .fc -100 30
 .end_snap
 .fc 0 0
 .end_snap
 .fc 50 100
 % Turn painting on and reveal result
> .painting 1

See also: .recalc

.pan_left, .pan_right, .scroll_up, .scroll_down

Move the window around over the ray diagram as if the scroll buttons on the Raytrace window
were used.

Example:

 .open disperse.ray
 .pause
> .pan_left
 .pause
> .pan_right
 .pause
> .scroll_up
 .pause
> .scroll_down
 .close_script

.paraxial_mirror

Create a par-axial mirror element. Must be followed by appropriate click type commands to
specify the position, height and focal length of the mirror. Usage is subject to the setting of the
Create -- Par-axials on centre menu item which may be set using the command
.paraxials_on_centre.

When the mirror s completed its object handle is placed in the accumulator for later reference.

Example:

 % Use the aperture ends specification for the mirror
 .paraxials_on_centre 0
> .paraxial_mirror
 % Aperture end point one
 .click 0 0
 % Other aperture end
 .click 0 100
 % Focal length
 .click 200 0
 % Store handle for later use
 .=> MIRROR

See also: .converging_lens, .create_region and .paraxials_on_centre

.paraxials_on_centre

.paraxials_on_centre [flag]

Same function as available with the menu item Create -- Par-axials on centre.

If flag is 0 then turns the option off.
If flag is non-zero then turns the option on.
If flag is omitted then toggles the setting of the option.

The updated state of the option is placed in the accumulator.

See also: .converging_lens and paraxial_mirror

Commands in alphabetic order

57

.parent_reflect, .parent_refract See .back_project

.paste See .cut

.pause

.pause [delay]

Pauses execution of the script for delay milliseconds.

If delay is omitted then stops execution of the script and enables the Continue button in the
script dialog box. Execution continues when the user clicks on the continue button.

.pause_trails, .reset_trails

.pause_trails [flag]

Same function as the menu item Modify -- Pause Trail update.

If flag is 0 then suspends updating of all trails.
If flag is non-zero then resumes updating of all trails.
If flag is omitted then toggles the Modify -- Pause Trail update state.

The updated state of the option is placed in the accumulator.

.reset_trails

Same function as the menu item Modify -- Reset Trails.

See also: .trail

.perp_snap See .centre_snap

.physical_length See .optical_length

.plane_source, .point_source, .source_ray_count

.plane_source
.point_source

Create a source. Must be followed by appropriate click type commands to define the three
points needed.

When the source is completed its object handle is placed in the accumulator.

.source_ray_count [integer]

Sets the number of rays in either selected sources or as the default for sources to be created.

Example:

> .source_ray_count 10
> .plane_source
 .click 0 100
 .click 100 100
 .click 100 0
> .source_ray_count 30
> .point_source
 .click -50 -50
 .click 0 -100
 .click 0 -20
 .=> PNT

Commands in alphabetic order

58

.printf

.printf format [real]

Converts real to a string and appends it to the text appearing in the script dialog box.

format is a format specifier string which controls how the number is output. It has the same
conventions as used with the printf function in C programming as summarised below.

format = % [flags] [width] [.prec] [F|N|h|l|L] type_char

format specifiers begin with the percent character (%). After the % come the following, in this
order:

Component Opt./Req. What It Controls or Specifies
[flags] (Optional) Flag character(s) Output justification, numeric signs,
 decimal points, trailing zeros
[width] (Optional) Width specifier Minimum number of characters to print,
 padding with blanks or zeros
[.prec] (Optional) Precision specifier Maximum number of characters to print; type_char
 (Required) Conversion type character

type_char must be one of the following for correct functioning.

f Floating point Signed value of the form [-]dddd.dddd.
e Floating point Signed value of the form [-]d.dddd or e[+/-]ddd
g Floating point Signed value in either e or f form, based on given value and

precision. Trailing zeros and the decimal point are printed if
necessary.

E Floating point Same as e; with E for exponent.
G Floating point Same as g; with E for exponent if e format used

Example:

 % Print a number in different formats
> .printf %6.2f 123.456

> .printf %g 123.456

> .printf %1.4e 123.456

 % Need the blank line above to update output after .printf

See also: .new_text

.protractor

.protractor

Creates a protractor object. Must be followed by appropriate click type commands to define the
centre and end points of the protractor.

Example:

 % Create a protractor that measures the angle between two rays
 % User selects the two rays
 :START
 .unselect_all
 .new_text
 Select the first ray by clicking on it.
 :GET1
 .user_click
 .selected_ray
 .=> RAY1
 .if!= -1 OK1
 .new_text
 You have not selected a ray, try again
 .goto GET1
 :OK1

Commands in alphabetic order

59

 .unselect_all
 .new_text
 Select the second ray by clicking on it.
 :GET2
 .user_click
 .selected_ray
 .=> RAY2
 .if!= -1 OK2
 .new_text
 You have not selected a ray, try again
 .goto GET2
 :OK2
 .RAY1
 .if!= RAY2 OK3
 .new_text
 You have selected the same ray twice.

 Click on continue to try again.
 .pause
 .goto START
 :OK3
 % Now create the protractor
> .protractor
 % Centre on the intersection of the rays
 .intersect_snap
 .select_object RAY1 RAY2
 .control_key 1
 .fc 10000 10000
 .control_key 0
 % First end point on one ray
 .object_coordinates RAY1 end
 .end_snap
 .fc X Y
 % Second end on other ray
 .object_coordinates RAY2 end
 .end_snap
 .fc X Y
 .close_script

.protractor_options

.protractor_options decimals lead display

decimals the number of decimal places to be displayed
lead one of: leader
 no_leader
display one of: degrees for angle in degrees
 radians for angle in radians
 none for no angle display

Example:

 .protractor
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .=> PROT
 .select_object PROT
> .protractor_options 3 no_leader radians
 .unselect_all

.quiet_snap

.quiet_snap [flag]

Raytrace normally responds to the result of a snap operation with a sound. This can be in-
appropriate in a script so this command allows you to control the
use of sound in snapping. Same as the menu item Options -- Quiet Snap.

If flag is 0 then turns the sound on.
If flag is non-zero then turns the sound off.

Commands in alphabetic order

60

If flag is omitted then toggles the quiet snap state.

The updated state is placed in the accumulator.

.radius_end See .centre_end

.rad>deg See .deg>rad

.random

See the section "The script calculator" for info on this keyword.

Commands in alphabetic order

61

.randomize

Randomizes the sequence of number generated when the keyword random is used in place of
an argument. Without this, the same sequence of random numbers would be generated each
time Raytrace was started.

.ray_diffraction

.ray_diffraction orders

orders is a list of the diffraction orders i.e. integer numbers between -3 and +3 inclusive

Sets the diffracted rays that will be generated if this ray strikes a diffraction grating element.
This setting overrides the setting of the diffraction grating. If rays are selected then this
command affects the settings for those rays otherwise it sets the default values for new rays.

See also: .create_grating

.ray_of_source

.ray_of_source source N

source is an object handle of a source

Finds the Nth ray of a source and places its object handle in the accumulator. Rays are
counted from 0.

Example:

 .source_ray_count 5
 .plane_source
 .fc 0 100
 .fc 100 100
 .fc 100 0
 .=> SRC
 % Select the first and last rays of the source
> .ray_of_source SRC 0
 .select_object
> .ray_of_source SRC 4
 .select_object

.recalc

.recalc [flag]

Normally Raytrace recalculates the ray paths after any function which could lead to a change
in ray paths. When many functions are performed in sequence in a script it is often not
necessary to recalculate the ray paths until a number of changes have been completed. Delays
caused by recalculating ray paths and can be annoying. This command allows you to stop the
recalculation and thus speed up script execution; only recalculating when the desired
configuration is ready.

If flag is 0 then turns ray calculations off.
If flag is non-zero then turns ray calculations on.
If flag is omitted then toggles the recalc state.

The updated recalc state is placed in the accumulator.

When the recalc state is set to on the ray paths are automatically recalculated.

Example:

 % Turn ray calculations off while a lens is constructed
> .recalc 0
 .call mklens.rsc
 % Turn the ray calculations back on and update
 .recalc 1

See also: .painting

Commands in alphabetic order

62

.red See .blue

.red_index See .blue_index

.red_rays See .blue_rays

.refract, .reflect, .reflect_if_no_refract See .back_project

.refractive_index

.refractive_index R G B

R,G and B are the refractive indices for red, green and blue respectively. If any elements are
selected then their refractive indices are changed to the specified values. If no elements are
selected then the default refractive indices are changed.

Example:

 .create_region
 .fc 0 0
 .fc 100 0
 .fc 50 100
 .end_element
 .select_object
 % Set refractive index of element just created and selected
 .refractive_index 1.2 1.3 1.4
 .unselect_all
 % Set default refractive indices
 .refractive_index 1.5 1.6 1.7

See also: .material

.reset_trails See .pause_trails

.return See .call

.rotate, .rotate_drag

.rotate [angle]

angle is the rotation angle in degrees (anticlockwise = positive). If this argument is omitted
then the contents of the accumulator are used - do not confuse with .rotate_drag.

Same function as available with the menu item Modify -- Rotate if the rotate by angle option
is selected. Must be followed by a click type command to specify the centre of the rotation.

Example:

 % Create a simple element then rotate it
 .create_surface
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> CORNER
 .select_object CORNER
> .rotate 30
 .click 0 0
 .unselect_all

.rotate_drag

Same function as available with the menu item Modify -- Rotate if the rotate by dragging
option is selected. Must be followed by a click type command to specify the centre of the
rotation and a click to specify the reference direction and then dragging starts.

Commands in alphabetic order

63

Example:

 % Create a simple element then rotate it by dragging
 .create_surface
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> CORNER
 .select_object CORNER
> .rotate_drag
 .click 0 0
 .click 100 100
 .new_text
 Move the mouse to rotate the object. Click when finished.
 .user_click
 .unselect_all

See also: .mirror, .move_selection and .scale

.round, .truncate

.round [real] Rounds real to the nearest integer.

.truncate [real] Truncates real to the integer closer to zero.

Example:

 .-1.64
 .=> X
> .round X
 .printf %g

> .truncate X
 .printf %g

 % End of example script

.run_from, .script

.run_from filename

Sets the name of the script which will be run if the user clicks on the "Previous" button in the
script dialog box to filename. Enables the "Previous" button.

.script filename

Executes a script file called filename. Do not confuse with .call, you cannot "return" to the
original script.

Example:

In a script file called fred.rsc

 % Jump to the next script in sequence
> .script bill.rsc

In a script file called bill.rsc

 % Can step back to previous script after next line executes
 % Works regardless of whether fred.rsc was run or not
> .run_from fred.rsc

See also: .call

.save, .save/d See .open

.scale

Commands in alphabetic order

64

.scale [real]

Same function as the menu item Modify -- Scale. Must be followed by a click type command
to specify the centre of the scale operation. Scales all selected objects about the specified
point by the factor real.

Example:

 % Create a simple element then scale it
 .create_surface
 .fc 0 0
 .fc 100 0
 .fc 100 100
 .end_element
 .=> CORNER
 .select_object CORNER
> .scale 1.5
 .click 0 0
 .unselect_all

See also: .mirror, .move_selection and .rotate

.script See .run_from

.scroll_up, .scroll_down See .pan_left

.segment_count

.segment_count element

element is an object handle of an element.

Counts the number of segments making up the element and places the result in the
accumulator. Note that the closing segment of region elements is not counted.

Example:

 .create_region
 .fc 0 0
 .fc 100 0
 .fc 50 100
 .end_element
 .=> TRI
> .segment_count TRI
 .printf %g

 % End of example script

.selected_annotation, .selected_element, .selected_protractor,

.selected_ray, .selected_tapemeasure, .selected_trail

If an object of the specified type is selected then places the object handle of that object in the
accumulator. The results are not always predictable if more than one object of the same type is
selected.

See .protractor for an example using .selected_ray; others are used in a similar manner.

.select_child_rays

Same function as the menu item Edit -- Select Child Rays. See the Raytrace reference
manual for more information.

.select_extended

Same function as the menu item Edit -- Select extended or pressing the short cut key
Shift+F3. Must be followed by appropriate click type commands to specify the corner of the
selection rectangle. See the Raytrace reference manual for more information.

.select_group

Commands in alphabetic order

65

Same function as the menu item Edit -- Select Group. See the Raytrace reference manual for
more information.

.select_object

.select_object handle

Selects the object whose object handle is given.

Example:

 .create_ray
 .fc 0 0
 .fc 100 100
 .=> RAY
 .finished_rays
> .select_object RAY

.set_length

.set_length [real]

Sets the default length of any selected rays. If no rays are selected then sets the default length
for rays created in the future. Only has an apparent effect on rays that do not interact with an
element.

Example:

 .file_new
 .source_ray_count 5
> .set_length 40
 .point_source
 .fc -50 0
 .fc 0 0
 .fc 0 50
> .set_length 80
 .point_source
 .fc 0 0
 .fc 100 0
 .fc 100 100

.set_radius

.set_radius [real]

When an arc tangent control point is being dragged, use this command to set the arc's radius
to the value real. Same as the function which is accessed using the secondary mouse button
while dragging an arc tangent control point. To set the arc to an infinite radius set real = 0.
Completes the dragging operation just as it does in manual control.

Example:

 .create_surface
 .fc 0 0
 .arcseg
 .chord_tan
 .fc 0 100
 .fc 50 100
 .end_element
 .=> ARC
 .select_object ARC
 .object_coordinates ARC 1 tangent
 .fc X Y
> .set_radius 60

.shift_key See .control_key

.show_annotations, .show_protractors, .show_tapemeasures, .show_trails

.show_annotations [flag]

Commands in alphabetic order

66

.show_protractors [flag]

.show_tapemeasures [flag]

Controls the setting of the menu items Options -- Show > Annotations etc.

If flag is 0 then the objects will be hidden.
If flag is non-zero then the objects will be shown.
If flag is omitted the the state is toggled.

The updated state is placed in the accumulator.

.sign See .abs

.sin See .cos

.source_ray_count See .plane_source

.sqrt, .^2

.sqrt [real]

Places the square root of real in the accumulator. If real is negative then reports the error
"Invalid argument".

.^2 [real]

Squares real and places the result in the accumulator.

.step See .auto_trace

.tan See .cos

.tangent_snap See .centre_snap

.tapemeasure

Creates a tapemeasure object. Must be followed by appropriate click type commands to
specify the end points of the tape measure.

Example:

 .file_new
 % Create an arc to do measuring on
 .create_surface
 .fc 0 0
 .arcseg
 .chord_tan
 .fc -10 100
 .fc 150 100
 .end_element
 % Snap a tapemeasure between centre and mid point
> .tapemeasure
 .centre_snap
 .fc 0 0
 .mid_snap
 .fc 0 0
 .=> TAPE
 .select_object TAPE
 % Modify tapemeasure options
 .tapemeasure_options 3 1 leader degrees
 % Move leader
 .object_coordinates TAPE lead_to
 .fc X Y
 .fast_click_rel -30 20
 .unselect_all

.tapemeasure_options

Commands in alphabetic order

67

.tapemeasure_options dist_decimals angle_decimals lead display

dist_decimals number of decimal places for distance display
angle_decimals number of decimal places for polar angle display
lead one of leader
 no_leader
display one of distance display only length
 cartesian display x,y displacement
 degrees polar form, angle in degrees
 radians polar form, angle in radians
 none no readout displayed

See .tapemeasure for an example.

.terminal_snap See .centre_snap

.thin_lenses_with_background

 .thin_lenses_with_background flag

If flag is zero then unchecks the menu item Modify -- Thin lenses with background
If flag is non-zero then checks Modify -- Thin lenses with background
If flag is omitted then toggles the check state of Modify -- Thin lenses with background

.trail

Create a trail object. Must be followed by a click type command with an object snap.

Example:

 .file_new
 % Create 2 rays, will put trail on intersection
 .create_ray
 .fc 0 0
 .fc 20 20
 .fc 0 100
 .fc 20 80
 .finished_rays
 % Select the 2 rays
 .all_rays
> .trail
 % Snap trail on intersection
 .intersect_snap
 .control_key 1
 .fc 10000 10000
 .control_key 0
 % Re-select rays for dragging
 .all_rays
 %Drag end of first ray
 .click 20 20
 .click 20 30
 % Drag end of second ray
 .click 20 80
 .click 20 70
 .unselect_all

.truncate See .round

.undo

Same as selecting Edit -- Undo. Will not be fully functional if .enable_undo has been used to
suspend saving of the undo information.

See also: .enable_undo

.ungroup See .group

.unlink_segments See .link_segments

Commands in alphabetic order

68

.unlink_sources

Same function as the menu item Modify -- Source > Unlink snaps. Breaks any links between
all selected sources and any other objects in the ray diagram.

.unlock See .lock

.unselect_all

Unselects all selected objects in the ray diagram. A good idea to use this before establishing a
new selection set just to be sure you don't have something selected you did not know about.

See also: .unselect_annotations

.unselect_annotations, .unselect_elements, .unselect_protractors,

.unselect_rays, .unselect_tapemeasures, .unselect_trails

Unselect all objects of the specified type.

Example:

 % Leave only elements selected
> .unselect_annotations
> .unselect_protractors
> .unselect_rays
> .unselect_tapemeasures
> .unselect_trails

.unselect_object

.unselect_object handle

If the object whose object handle is given is selected then this will unselect it. Use in same
manner as .select_object.

.update_on_element_drag, .update_on_ray_drag

.update_on_element_drag [flag]
.update_on_ray_drag [flag]

Same functions as available with the menu items Options -- Update on Element Drag and
Options -- Update on Ray Drag.

If flag is 0 then unchecks the option.
If flag is non-zero then checks the option.
if flag is omitted then toggles the state of the option.

The updated state of the option is placed in the accumulator.

.userinput

See the section "The script calculator" for info on this keyword.

.user_click

.user_click [LABEL]

Gives control to the user for one click. When the user clicks on the primary mouse button
control is returned to the script. If the user clicks outside the limits set by .mouse_limits and
the LABEL argument is given then the click has no effect and execution is transferred to the
line following :LABEL. If the LABEL argument is not given then the click is accepted
regardless of whether it lies within the .mouse_limits region or not. Unlike .allow_drag, the
user's click is fully functional and can select objects or complete a drag operation.

Example:

Commands in alphabetic order

69

 % Create a surface to work on
 .file_new
 .create_surface
 .fc 0 0
 .arcseg
 .chord_tan
 .fc 0 100
 .fc 50 100
 .end_element
 .=> ARC
 % Create a rectangle to show mouse limits in this example
 .create_shape
 .fc 10 50
 .fc 100 50
 .fc 100 100
 .fc 10 100
 .fc 10 50
 .end_element
 .select_object ARC
 .mouse_limits 10 50 100 100
 .fc 50 100
 % Let the user drag and decide where to stop
 :DOCLICK
 .new_text
 Drag the tangent control point now to set the shape of the arc.

 Click somewhere in the rectangular box when you have finished.
 .fast_move 30 70
> .user_click NOGOOD
 .new_text
 You clicked at coordinates:
 .printf %g lastclick.x
 ,
 .printf %g lastclick.y

 .pause
 .close_script
 :NOGOOD
 .new_text
 You did not click within the rectangular box.

 Do you really want to click outside the box?
 .yes_no DOCLICK
 .new_text
 Go ahead then.
 .mouse_limits -10000 -10000 10000 10000
> .user_click
 .close_script

See also: .allow_drag, .mouse_limits and .user_control

.user_control

Gives the user full control of Raytrace. To return to the script the user must click on the
Continue button in the script dialog box. Be aware that the user can do anything here and may
not follow any direction exactly. If you want the ray diagram to be in a particular state when the
user is finished then you should .save the ray diagram before releasing control and .open it
when the user has finished; you can then modify the ray diagram as expected. Of course if the
user modifies and explicitly saves the ray diagram with the same name you choose to use then
they have defeated you!

Example:

 % Create a simple diagram for this example
 .file_new
 .painting 0
 .quiet_snap 1
 .enable_undo 0
 % First create a simple lens
 .create_region

Commands in alphabetic order

70

 .fc 0 -50
 .arcseg
 .chord_tan
 .fc 0 50
 .fc 50 50
 .fc 0 -50
 .fc -50 -50
 .end_element
 .=> LENS
 % And a source linked to the lens
 .source_ray_count 6
 .point_source
 .fc -100 0
 .end_snap
 .fc 0 -50
 .end_snap
 .fc 0 50
 .=> SRC
 % Show the result
 .painting 1
 .new_text
 In this example a source has been linked to the lens using
 snaps. When the lens is moved the source is always incident
 upon it.
 .pause
 .unselect_all
 % Move the lens about to demonstrate the linking
 .select_object LENS
 .object_coordinates LENS 1 middle
 .click X Y
 .pause 500
 .move_rel 100 50
 .pause 500
 .move_rel 0 -100
 .move X Y
 .pause 300
 .click X Y
 .unselect_all
 % Delete the source and make some annotations to guide user
 .clear_rays
 .annotation Centre here
 .fc -100 0
 .fast_click_rel -20 20
 .annotation Ap'ture 1 - end snap here
 .end_snap
 .fc 0 -50
 .fast_click_rel 20 -20
 .annotation Ap'ture 2 - end snap here
 .end_snap
 .fc 0 50
 .fast_click_rel 20 20
 .quiet_snap 0
 .enable_undo 1
 % Save the diagram then let the user have a go.
 .save temp123.ray
 :USERTRY
 % Give some explicit directions
 .new_text
 You now have control of Raytrace.

 Use the menu item Create -- Point source and try linking the
 source to the lens using end snaps. If you succeed then when
 you drag the lens about the source should always be incident
 upon it.

 Click on Continue when you have finished.
 % Let the user try
> .user_control
 .new_text
 Did you succeed? Click on No to try again.
 .yes_no PROCEED RETRY
 :RETRY

Commands in alphabetic order

71

 .open temp123.ray
 .goto USERTRY
 :PROCEED
 .open temp123.ray
 % You could continue on with something else now.
 .close_script

See also: .allow_drag and .user_click

.vertex_snap See .centre_snap

.wavelengths

.wavelengths R G B option

Sets the wavelengths of the three colours red, green and blue in that order. Values are
specified in nanometres. If option is is zero then leaves refractive indices of existing elements
alone. If option is non-zero then changes refractive indices to the correct values for the new
wavelengths.

No checking is done on sensible values for the wavelengths!

Example:

 % Set specific wavelengths and modify all elements
 .wavelengths 450 560 700 1

.white_ray

Sets the colour of the selected rays in the sequence red, green, blue. Can be used to create a
"white ray".

Example:

 % Create a prism
 .file_new
 .material light flint
 .create_region
 .fc -80 0
 .fc 80 0
 .fc 0 100
 .end_element
 .=> PRISM
 % Create a source hitting the prism
 .source_ray_count 3
 .point_source
 .fc -160 -47
 .mid_snap
 .object_coordinates PRISM 3 middle
 .fc X Y
 .mid_snap
 .fc X Y
 % Make the source a white ray
 .all_rays
> .white_ray
 .unselect_all

.yes_no

.yes_no YES_LABEL NO_LABEL
.yes_no NO_LABEL

Presents the user with two buttons labelled Yes and No. Transfers execution depending upon
which button is clicked. If two arguments are given the execution is transferred to the line
following the appropriate label. If only one argument is given and the Yes button is clicked then
execution passes to the next line.

Example:

 :LOOP
 % This section will be repeated until user likes the result

Commands in alphabetic order

72

 ...
 :TEST
 .new_text
 Are you happy with the result?
> .yes_no LOOP
 % Continue here if Yes is clicked

See also: .choose, .goto, .if==

.zoom_extents, .zoom_in, .zoom_out, .zoom_previous, .zoom_reset

Same functions as available with the Zoom menu. .zoom_in and .zoom_out must be followed
by appropriate click commands to specify the zoom range.

See also: .pan_left

.10^ See .exp

.=>

Store the contents of the accumulator in a script variable. Creates the variable if necessary.

If the available variable space is full then the error message "Too many script variables
defined" is reported. Make sure you clear any unwanted variables.

Example:

 .123.456
 .=> FRED

See also: .clear_var

.+, .-, .*, ./, .1/, .+/-, .^2

.+ [real] add real to the accumulator
.- [real] subtract real from the accumulator
.* [real] multiply accumulator by real
./ [real] divide accumulator by real
.1/ [real] put the reciprocal of real in the accumulator
.+/- [real] change the sign of real and put result in accumulator
.^2 [real] square real and place result in accumulator

The result of these operations always ends up in the accumulator.

Both ./ and .1/ may report "Divide by zero" if real is zero.

Example:

 % Approximate specific function (y = x2/40 + 2x + 7)
 % in the range -50<=X<=50 by line segments.
 % Step X +5 each time.
 .file_new
 .-50
 .=> X
 .create_surface
 :LOOP
 .X
> ./ 40
> .+ 2
> .* X
> .+ 7
 .=> Y
 .fc X Y
 .X
> .+ 5
 .=> X
 .if<= 50 LOOP
 .end_element

Commands in alphabetic order

73

.--if!=0

.--if!=0 variable LABEL

Decrements the script variable called variable and if the result is not equal to zero branches
execution to the line following :LABEL.

Example:

 % Approximate specific function (y = x2/40 + 2x + 7)
 % starting at X = -50 stepping X +5 for 20 steps
 .file_new
 .-50
 .=> X
 .20
 .=> COUNT
 .create_surface
 :LOOP
 .X
 ./ 40
 .+ 2
 .* X
 .+ 7
 .=> Y
 .fc X Y
 .X
 .+ 5
 .=> X
> .--if!=0 COUNT LOOP
 .end_element

See also: .if==

