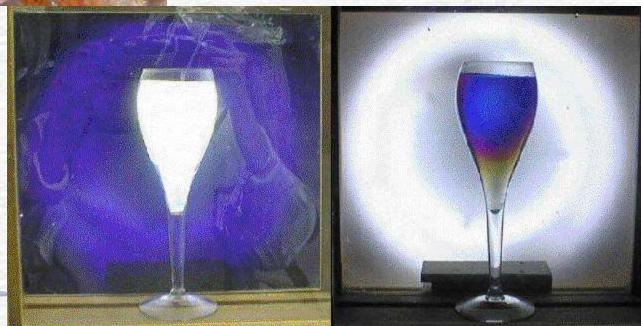
Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal: 6647 Ed. Basílio Jafet, sala 100

Física Experimental IV - FAP214

www.dfn.if.usp.br/curso/LabFlex www.fap.if.usp.br/~hbarbosa


Aula 2, Experiência 3 Placas de Onda

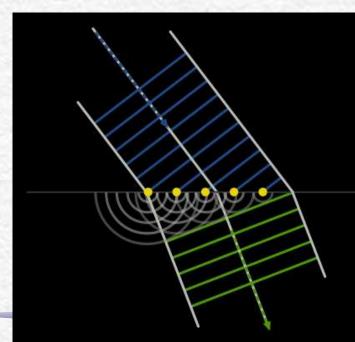
Aula do Prof. A. Suaide com algumas adaptações

AULA DE HOJE

Birrefringência Placas de onda

Birrefringência

- Birrefringência, ou refração dupla, é a decomposição de um raio de luz em dois raios (o raio ordinário e o extraordinário), dependendo da sua polarização, quando ele passa por certos tipos de materiais.
- Este efeito só pode acontecer se o material for anisotrópico, isto é, o índice de refração não for o mesmo em todas as direções e polarizações.

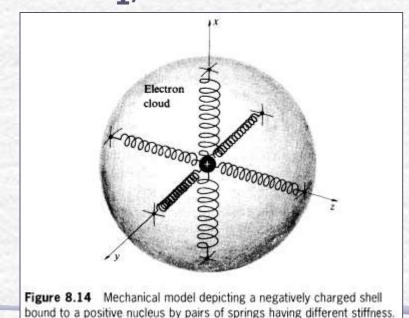


Birrefringência: 2ª parte

- Se o material tiver apenas um eixo de anisotropia (eixo óptico), a birrefringência pode ser tratada associando dois índices de refração diferentes para as duas polarizações possíveis.
- Se o material tiver dois eixos ópticos, falamos de birrefringência biaxial. Neste caso o índice de refração em geral é um tensor complexo com três autovalores distintos n_α, n_β, n_γ.
- Tipos diferentes de birrefringência
 - o Birrefringência simples (placas de onda)
 - Rotação óptica ou dicroísmo circular

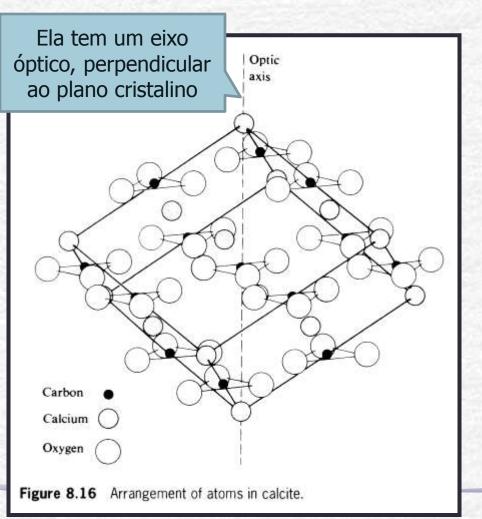
Birrefringência: Modelo Simples

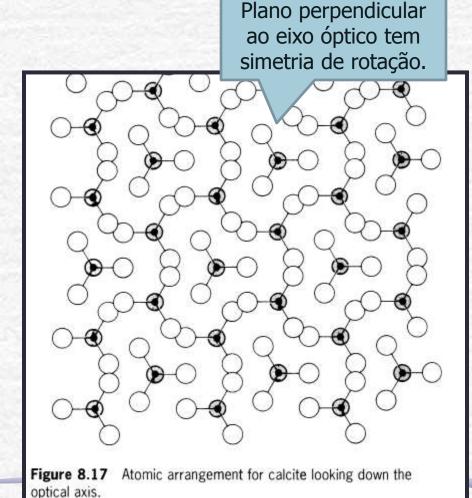
- A luz se propaga numa substância transparente excitando os elétrons do meio.
- Os elétrons oscilam forçados pelo campo elétrico e reemitem a radiação absorvida.
- Estas ondas secundárias se combinam e interferem, resultando na onda refratada.
- A velocidade da onda e, portanto o índice de refração, é determinada pela diferença entre as freqüências do *E* e da vibração natural dos elétrons.


Birrefringência: Modelo Simples

 O material será opticamente anisotrópico se a força de ligação da nuvem de elétrons ao núcleo for diferente para direções diferentes.

 É como se tivéssemos 3 constantes de mola diferentes. Neste caso, um elétron posto a vibrar na direção do conjunto de molas k₁, vai oscilar


com uma freqüência diferente daquela que teria se estivesse vibrando ao longo de outra direção.


Lembrem-se, isto é apenas um modelo conceitual para facilitar o entendimento!

Calcite

 Um típico cristal birrefringente é a calcite, ou carbonato de Cálcio (CaCO₃).

Calcite

Este material tem um eixo óptico apenas.

 Qualquer onda EM incidente pode ser decomposta em duas componentes: uma no plano formado

pela direção da onda e do eixo óptico (e), e uma perpendicular a ele (o)

- O raio-e é desviado enquanto que o raio-o passa direto.
- Por isso formam-se duas imagens refratadas (birrefringência)!

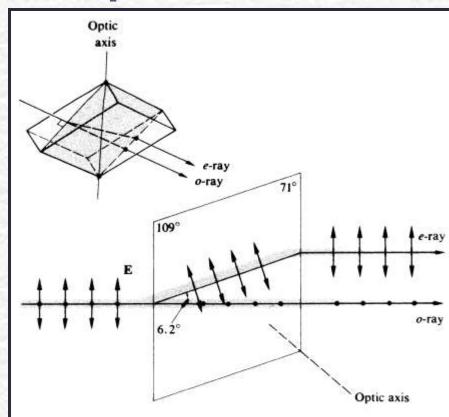
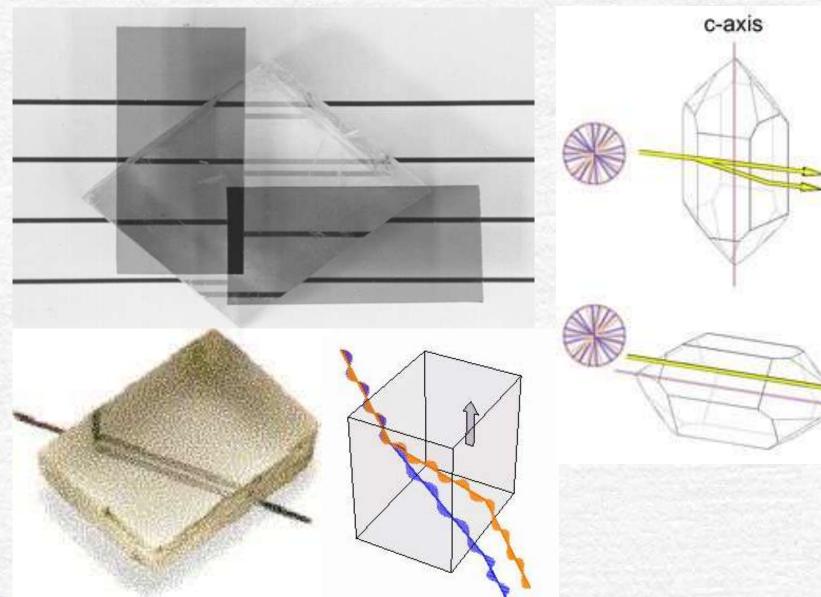
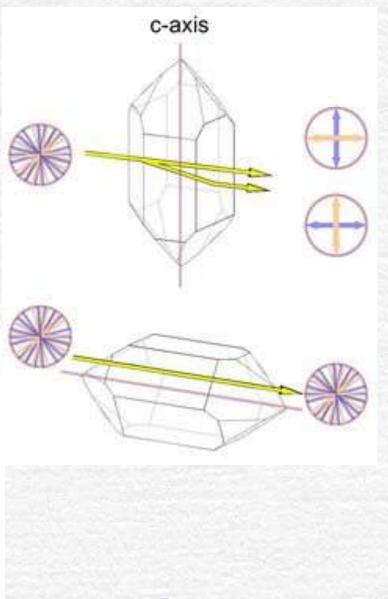




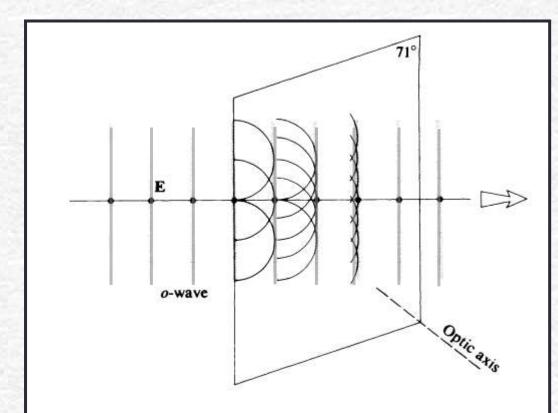
Figure 8.19 A light beam with two orthogonal field components traversing a calcite principal section.

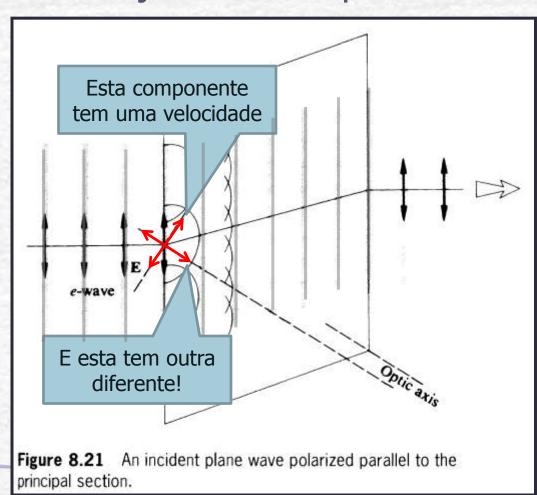
Calcite

As Duas Direções

 No plano perpendicular ao eixo óptico, as duas molas são iguais e a velocidade de propagação é mesma para qualquer orientação de *E* no plano.

Por isso **raio-o** não sofre desvio.




Figure 8.20 An incident plane wave polarized perpendicular to the principal section.

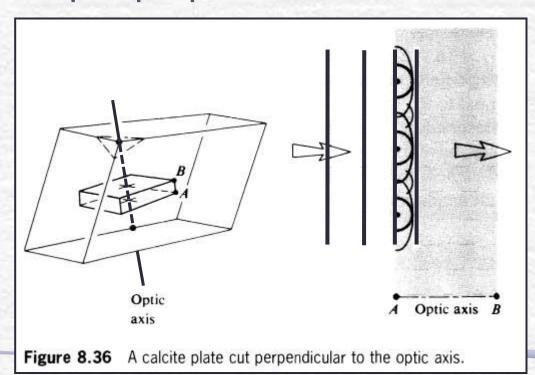
As Duas Direções

 No plano perpendicular ao eixo óptico, as duas molas são iguais e a velocidade de propagação é mesma para qualquer orientação de *E* no plano.

Por isso **raio-o** não sofre desvio.

- O raio-e tem duas componentes: uma na direção do eixo e outra perpendicular.
- Cada uma tem uma velocidade diferente e por isso o raio-e muda de direção.

Placa de Onda


 Podemos cortar o material birrefringente de tal forma que o eixo óptico seja perpendicular a face onde incidimos a luz.

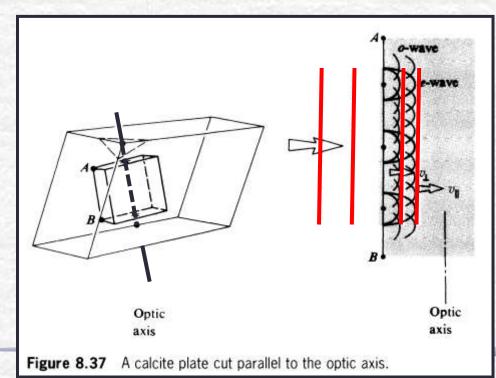
 Neste caso, para uma incidência perpendicular, o campo elétrico será sempre perpendicular ao eixo

óptico!

 Assim, todas as componentes vão se propagar com a mesma velocidade
 v₁.

Não há defasagem!

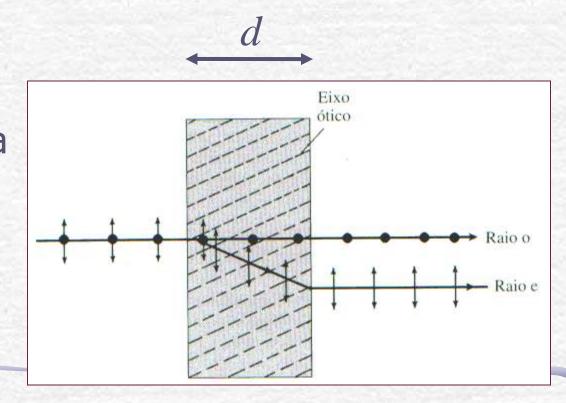
Placa de Onda


 Podemos cortar de tal forma que o eixo óptico seja paralelo a face onde incidimos a luz.

• Neste caso, a componente do campo elétrico na direção do eixo terá uma velocidade \mathbf{v}_{II} e a componente perpendicular terá outra velocidade

v_I diferente!

 Mas as duas tem a mesma direção (não há desvio)!


 Como n_o≠n_e, haverá uma defasagem que depende da espessura do material.

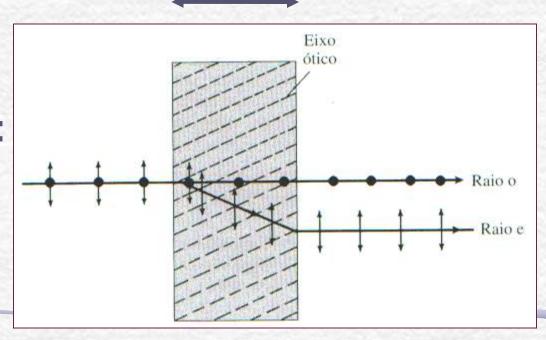
Placas de onda

 São placas confeccionadas a partir de materiais birrefringentes cujo objetivo é alterar as fases entre as componentes o e e da luz incidente

Seja uma placa de espessura d. Qual é a diferença de fase entre as duas componentes após sair da placa?

Placas de onda

• Índice de refração para cada componente:


$$n_o = \frac{c}{v_o}$$
 $n_e = \frac{c}{v_e}$

Tempo que cada componente leva para atravessar a placa

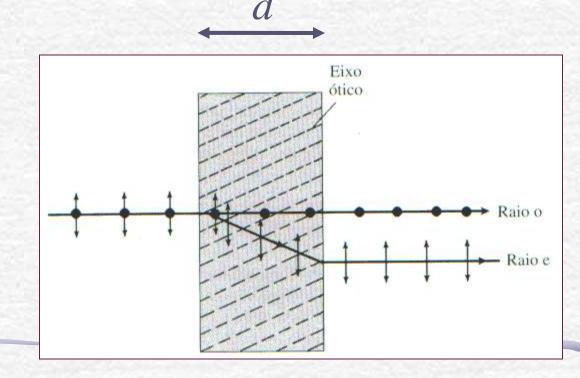
$$t_o = \frac{d}{v_o} = d \frac{n_o}{c} \qquad t_e = d \frac{n_e}{c}$$

• Diferença de tempo:

$$\Delta_t = t_o - t_e = \frac{d}{c} (n_o - n_e)$$

Placas de onda

• Se a diferença de tempo entre as duas ondas é

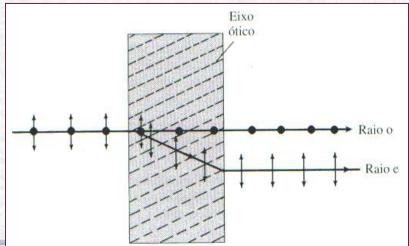

$$\Delta_t = t_o - t_e = \frac{d}{c} (n_o - n_e)$$

Então a diferença de fase é

$$\Delta \phi = 2 \pi \frac{\Delta_t}{T}, \quad T = \frac{\lambda}{c}$$

• Substituindo...

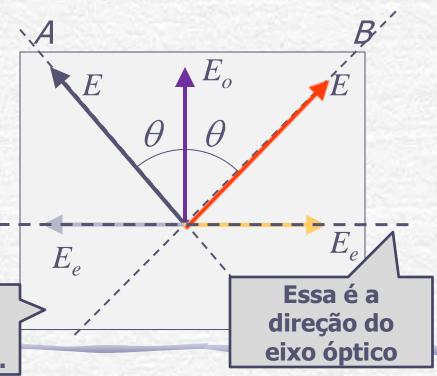
$$\Delta \phi = 2\pi \frac{d}{\lambda} (n_o - n_e)$$

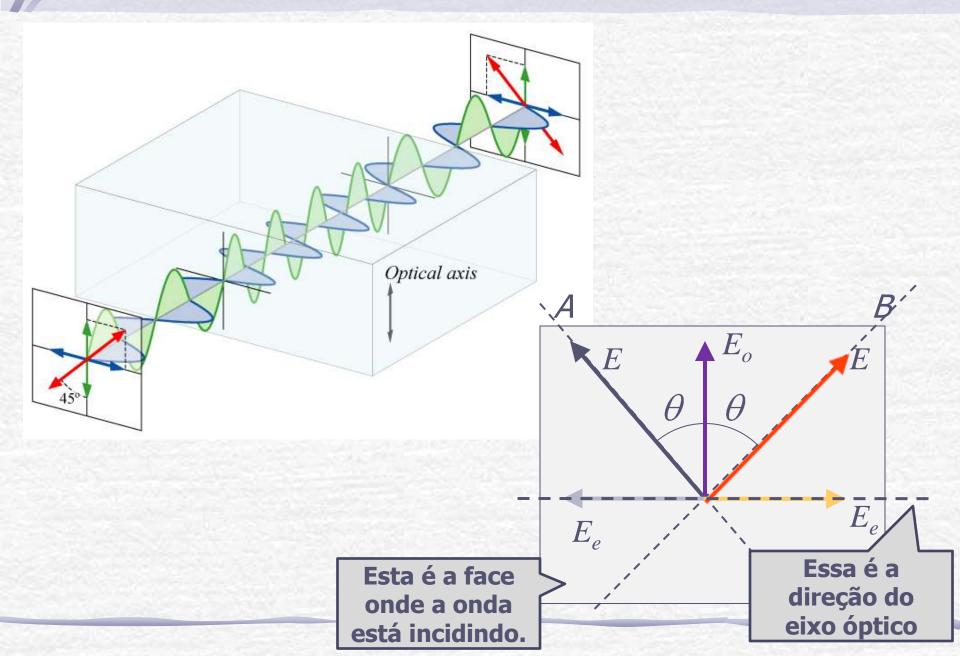

Placas de 1/2 onda

• A placa de 1/2 onda é aquela na qual a diferença de fase obtida entre as duas componentes é 1/2 do período, ou seja, π .

$$\Delta \phi = (2m + 1)\pi$$

 Isto somente ocorre quando a espessura da placa está bem relacionada com o comprimento de onda, de tal forma que:


$$d = \frac{(2m+1)}{2(n_o - n_e)}\lambda$$


Placas de 1/2 onda

- Vamos ver as componentes do campo elétrico na entrada da placa
 - O campo elétrico esta sempre oscilando ao longo da linha A
- E na saída a componente e está defasada de meia onda relativamente à componente o.
 - O campo elétrico vai oscilar ao longo da reta B
 - Ou seja, a placa de ½ onda gira o campo elétrico de 2θ.

Esta é a face onde a onda está incidindo.

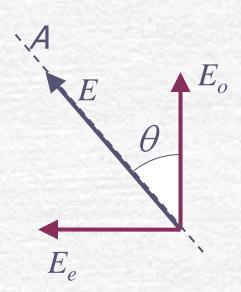
Placas de 1/2 onda

Placas de 1/4 de onda

• A placa de ¼ de onda é aquela na qual a diferença de fase obtida entre as duas componentes é ¼ do período, ou seja, $\pi/2$.

$$\Delta \phi = (4 m + 1) \frac{\pi}{2}$$

 Isto somente ocorre quando a espessura da placa está bem relacionada com o comprimento de onda, de tal forma que:


$$d = \frac{(4m+1)}{4(n_o - n_e)} \lambda$$

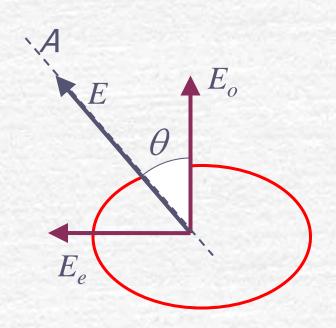
Placas de 1/4 de onda

- Vamos ver as componentes do campo elétrico na entrada da placa
 - O campo elétrico esta sempre oscilando ao longo da linha A
 - O campo elétrico pode, em qualquer instante de tempo, ser escrito como:

$$\dot{E} = E_o \cos(kx - \omega_t)\hat{o}$$
$$+ E_e \cos(kx - \omega_t)\hat{e}$$

• A placa de $\frac{1}{4}$ onda introduz uma fase de $\frac{\lambda}{4}$ na componente e.

Placas de 1/4 de onda


Assim, o campo elétrico na saída da placa

$$\dot{E} = E_o \cos(kx - \omega_t)\hat{o}$$

$$+ E_e \cos(kx - \omega_t + \frac{\pi}{2})\hat{e}$$

• Ou seja:

$$\dot{E} = E_o \cos(kx - \omega_t)\hat{o}$$
$$+ E_e \sin(kx - \omega_t)\hat{e}$$

 A onda que era inicialmente polarizada torna-se elipticamente polarizada

Objetivos desta parte da aula

- Verificar se a placa de onda que está na bancada, é realmente de 1/4:
 - se for é possível transformar uma onda linearmente polarizada em uma onda circularmente polarizada.
- caso a placa não seja perfeita
 - calcular o atraso que a sua placa introduziu entre as 2 componentes
 - Calcular qual a espessura da sua placa e qual a espessura que ela deveria ter se fosse perfeita.
 - Verificar o efeito na medida caso o 1º polarizador não esteja em 45º.

Como são as nossas placas de onda?

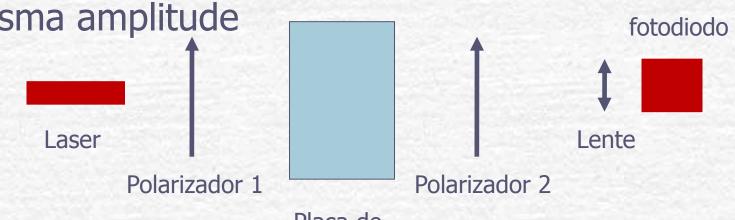
- Placas de 1/4 ou 1/2 onda podem ser construídas "em casa" usando durex ou plástico de embrulhar alimentos ou papel celofane.
- Esses materiais têm moléculas alongadas alinhadas numa direção, o que os torna birrefringentes.
- Adicionando camada a camada desses materiais sobre uma placa de vidro, consegue-se placas de ½ onda ou de ¼ de onda bastante razoáveis (razoável quer dizer que introduzem uma diferença de fase dentro de 10% dos valores previstos).
- As que vão usar são feitas de durex.

Placas de onda de durex

 O eixo ótico da placa corresponde à direção em que ela viaja mais rapidamente, é também chamado de eixo rápido.

• O eixo rápido, isto é, a direção de vibração da onda mais rápida corresponde à direção transversal da fita durex, e, o eixo lento (direção de vibração da onda mais lenta), corresponde ao comprimento da fita durex.

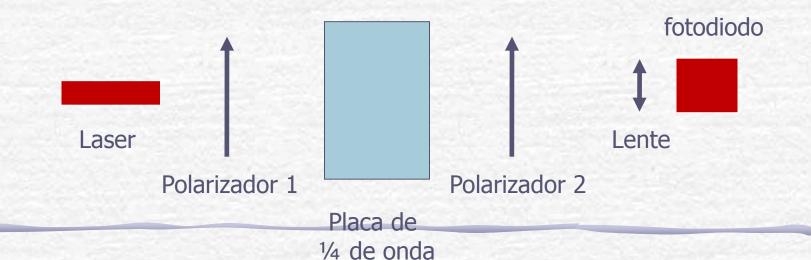
IMPORTANTE


 Para quem quiser usar existe uma planilha Excel pronta, no Desktop, chamada "Placas de Onda" que faz o cálculo da função teórica que vão ter que ajustar aos dados experimentais.

"Observation of Elliptical Polarized light using Quarter Wave Plate"
U. Hasan, LUMS School of Science and Engineering (2010)

Placa de 1/4 de onda

- Montar o arranjo do laser + polarizador + placa de ¼ de onda + polarizador + fotodiodo
- Ajustar o polarizador 1 para que fique a 45º em relação ao eixo óptico da placa de ¼ de onda

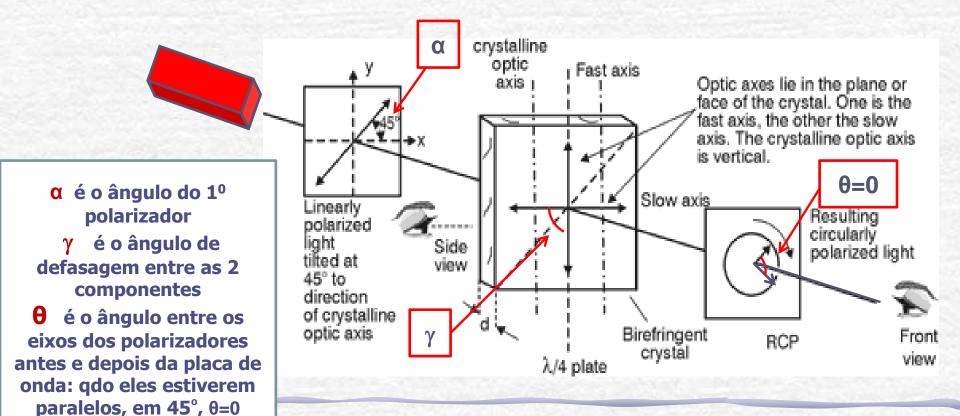

Isso garante que as componentes e e o têm a mesma amplitude

Placa de 1/4 de onda

Placa de 1/4 de onda

- Se a placa de ¼ de onda funciona, a onda emergente será circularmente polarizada
 - Pois as componentes e e o têm a mesma amplitude na entrada
 - Qualquer que seja a direção do polarizador 2, a intensidade no fotodiodo será a mesma

Situação Real de 1/4

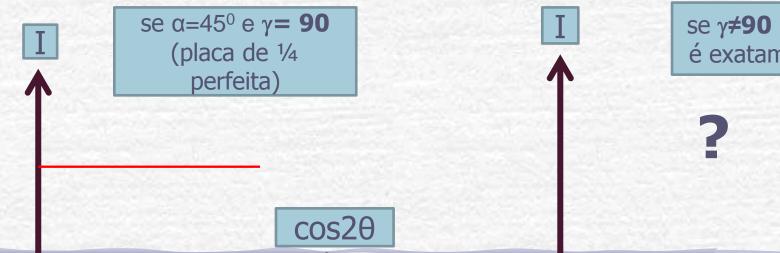

- Pode-se calcular a intensidade de luz em função do ângulo do primeiro polarizador (α) e da defasagem que a placa provoca γ:
 - se α não for 45º a luz sai elipticamente polarizada,
 que é o caso geral
 - se γ não for 90°, (2 componentes da luz incidente não têm a mesma intensidade), a placa não é perfeita.
- Esse cálculo está feito em detalhes no artigo:

"Observation of Elliptical Polarized light using Quarter Wave Plate" U. Hasan, LUMS School of Science and Engineering (2010)

A intensidade como função de α, γ, θ

 A expressão para a intensidade medida no plano de observação depois da placa, é:

$$I = \frac{1}{2}I_0 \left(1 + \left(\cos^2(2\alpha) + \cos(\gamma)sen^2(2\alpha)\right)\cos(2\theta) + sen^2\left(\frac{\gamma}{2}\right)sen(4\alpha)sen(2\theta)\right)$$

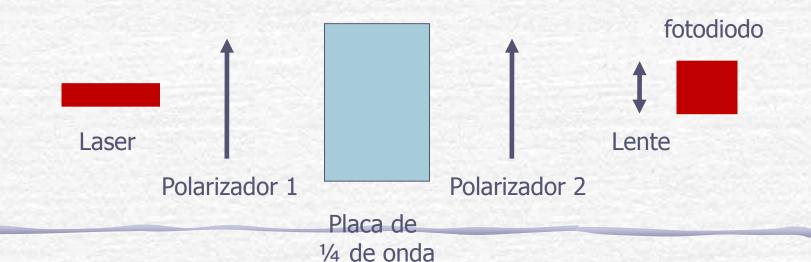

Intensidade p/ $a=45^{\circ}$, $\gamma=90^{\circ}$ em função de θ

$$I = \frac{I_0}{2} \left[1 + \left(\cos^2 \left(\frac{\pi}{2} \right) + \cos(\gamma) \sin^2 \left(\frac{\pi}{4} \right) \right) \cos(2\theta) + \sin^2 \left(\frac{\gamma}{2} \right) \sin\left(\frac{\pi}{4} \right) \sin(2\theta) \right]$$

$$= 0$$

$$I = \frac{I_0}{2} [1 + \cos \gamma \cos (2\theta)]$$

Se $\alpha \neq 45^{\circ}$, estes termos não se anulam e devem ser levados em conta no ajuste!


se γ**≠90** (a placa não é exatamente de ¼)

cos2

Para Entregar: Parte 1

Placa de 1/4 onda

- Medir a intensidade em função da posição do polarizador 2 no data studio
 - Fazer rápido para não ser influenciado pela variação de polarização e intensidade inicial do laser.

Tarefa2: análise da intensidade

- Faça o gráfico da intensidade I em função do cos(2θ).
- Ajuste a curva teórica aos dados experimentais :
 - Quais os parâmetros livres?
 - Quais os valores de \mathbf{a} e γ ?
- E verifique:
 - qual é o efeito do fato da placa não ser perfeita, considerando que o primeiro polarizador, a=45º
 - na sua medida avalie se de fato, o ângulo do 1º polarizador era 45º dentro dos erros experimentais
 - E compare os valores de α , γ e θ com os valores dos seus colegas.

Tarefa 3: espessura da placa

A placa é de fato de 1/4 de onda?

- Considerando a diferença entre os índices de refração para o raio "o" e do raio "e" Δn= (3,0 0,3)x10⁻⁴, calcule:
 - qual a espessura da sua placa
 - qual a espessura que ela deveria ter para ser perfeita.
- Compare com resultados dos colegas
- Discuta os erros experimentais.
- N. Carlin et al, Birrefringência em placas de onda e atividade óptica de uma solução de açúcar, RBEF, v. **27**, n. 3, p.349 (2005) http://www.sbfisica.org.br/rbef/pdf/v27_349.pdf